首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
国内外润滑油基础油生产技术及发展趋势   总被引:6,自引:0,他引:6  
张志娥 《当代石油石化》2005,13(4):25-30,i002
介绍了国内外生产润滑油基础油的老三套传统工艺的概况及技术进展,综述了国外润滑油加氧工艺技术的进展以及我国润滑油加氢装置的生产现状,指出采用传统的老三套工艺与加氢工艺结合的组合工艺是今后润滑油基础油生产的主要方向。  相似文献   

2.
随着工业的发展,尤其是汽车工业对高品质润滑油的需求量越来越大,而通过高压加氢工艺生产的润滑油基础油具有硫氮含量低、芳烃含量低、粘度指数高、低温流动性好等特点,能够保证润滑油的高品质。另外全加氢型润滑油生产工艺"三废"排放少、产品质量高,除能生产高端润滑油外,生产的石脑油、航煤、柴油等副产品品质也很高,能够满足环保节能的要求。本文围绕某石化40wt/a高压加氢润滑油基础油装置,对润滑油基础油加氢处理工艺进行分析,探究工艺条件对润滑油基础油的影响。  相似文献   

3.
信息与动态     
润滑油基础油加氢异构脱蜡催化剂研究获进展  基础油在润滑油中的含量通常为 70 %~ 99%。目前 ,我国因基础油生产工艺落后 ,导致润滑油产品非但不能进入国际市场 ,且国内市场也面临严峻的挑战 ,高档润滑油几乎全部依赖进口。为了提高我国基础油的生产工艺水平 ,开发具有自主知识产权的先进基础油生产工艺迫在眉睫 ,而加氢异构脱蜡技术是目前最先进的润滑油基础油生产工艺。由中科院大连化物所承担的中石油重点科技项目润滑油基础油加氢异构催化剂的中试放大及工业应用项目取得重大进展。该项目首先解决了加氢异构脱蜡催化剂载体分子筛的…  相似文献   

4.
减三线生产润滑油基础油优化工艺条件的研究   总被引:2,自引:1,他引:1  
戴庆鑫  陈树群  李少萍 《广东化工》2009,36(6):43-45,253
由于原油价格高,企业原油加工量不断提高,炼厂生产润滑油的原料变化频繁,为了最大限度地保证基础油的质量和收率,基础油生产工艺优化选择对指导工业生产极其重要。文章以卡宾达与阿曼1:1混合原油减三线馏分油为原料,采用实验室酮苯脱蜡、糠醛精制、白土补充精制过程,进行最优生产工艺条件筛选,采用优化工艺条件能够生产出符合HVI la250标准的润滑油基础油。  相似文献   

5.
基础油加工工艺对比及技术经济性分析   总被引:1,自引:0,他引:1  
董灵  瞿宾业 《化学工程师》2003,(5):43-44,64
对基础油的生产工艺:溶剂精制、溶剂脱蜡、补充精制工艺和加氢处理工艺分别进行分析,对采用不同工艺调制的中、高档润滑油油品的技术经济性进行对比,提出符合生产实际的基础油加工、生产及调制方案。  相似文献   

6.
介绍了以辽河、新疆、胜利、大庆及含硫油润滑油馏分为原料 ,采用高压加氢处理、溶剂精制 /中压加氢处理和加氢异构脱蜡 /补充精制工艺制取HVI和VHVI润滑油基础油的中型试验 ,结果表明 ,与传统润滑油生产工艺相比 ,加氢法具有目的产品收率高、质量好等优点。  相似文献   

7.
马时锋 《山西化工》2022,(5):134-136
随着社会经济的不断发展,对于润滑油基础油的质量要求逐渐增高,传统的润滑油生产工艺已经无法满足当前的市场需求,需要做好传统生产工艺的优化、升级工作。结合润滑油基础油的精制工艺而言,与老三套工艺相比较,不仅在空气释放性、抗乳化度和抗氧化安定性等指标上符合质量标准,且产品质量明显优于传统工艺生产,能满足社会的发展需要。为此,阐述润滑油基础油精制工艺流程,然后分析关键的流程环节,最后讨论关键的质量指标,确保精制工艺下的润滑油基础油有着较高的实用价值。  相似文献   

8.
随着对高规格润滑油需求量的不断增加,常规溶剂抽提工艺已无法满足APIⅡ类和APIⅢ类润滑油基础油的生产,而加氢工艺越来越广泛地用于生产高规格润滑油。为了提升中国的润滑油品质,提高产品的市场竞争力,炼化企业正加大对加氢工艺在高规格润滑油基础油生产上的推广和应用。简述了几种润滑油加氢工艺及其特点。  相似文献   

9.
本文讨论分析了润滑油基础油的生产工艺和添加剂的重要作用,提出将传统方式与加氢工艺相结合,制造出更高品质的润滑油,搭配合理的添加剂,将大大提高润滑油的性能,满足不断提升的市场要求。  相似文献   

10.
以中海油石蜡基减四线馏分油为原料,进行润滑油基础油生产工艺研究。研究结果表明:以石蜡基VGO4为原料,经加氢处理-异构脱蜡-补充精制组合工艺,得到收率为38%、黏度指数为112、倾点为-15℃、氧化安定性时长为398 min的HVIP 10润滑油基础油;以石蜡基VGO4为原料,经酮苯脱蜡-加氢处理-异构脱蜡-补充精制组合工艺生产润滑油基础油的条件更为苛刻,且目标产品收率较直接采用三段加氢工艺的实验结果低11%。  相似文献   

11.
12.
Normal phase preparative and semi-preparative liquid chromatography were used to isolate fractions of varying polarity from corn, soybean and sunflowerseed oils. Reported here is the composition of one fraction, less polar than triglycerides, determined by isolating the individual ?peaks? of a semi-preparative separation using as starting material the mix of compounds obtained from a large scale separation. These peaks were then analyzed by high performance liquid chromatography (LC) gas chromatography (GC), mass-spectrometry (MS) with and without GC, in both electron impact (EI) and chemical ionization (CI) modes, and carbon-13 nuclear magnetic resonance (NMR) spectroscopy. Semi-quantitative data were obtained for many of the components found in these semi-preparative isolates including hydrocarbons, steryl esters, triterpenyl esters, phytyl esters and geranylgeranyl esters. The weight percent and composition of the preparative fraction differed substantially among the three oils. Corn oil had the greatest amount, at 1.25% of the starting oil, and was composed mostly of steryl and triterpenyl esters. Sunflowerseed oil, at 0.7%, and soybean oil, at 0.3%, showed greater variety in that branched chain esters were included with the steryl/triterpenyl distributions.  相似文献   

13.
14.
Recycle of heavy oil (>340 °C) to the retort, in order to crack/coke the oil to lighter fractions, was investigated as a means of producing shale oil of more desirable product slates. Conversion of heavy oil to light oil (<340 °C) by thermal cracking and coking in the absence of and during oil shale retorting was studied using the CSIRO BIRCOS retort. As expected, the conversion by thermal cracking increased as temperature increased, with most of the net oil loss in the form of gas. By contrast, the conversion by coking alone decreased as temperature increased, with coke representing all the net oil loss. Thermal cracking was found not to be a first-order reaction, by showing a reduced conversion of heavy oil with reduced concentration of oil vapour. Retorting Stuart oil shale with heavy oil feeding and simultaneous cracking and coking showed a conversion of 19.1 g per 100 g feed heavy oil to 10.9 g light oil, 2.2 g gas and 6.0 g coke, with a net oil loss of 3.8 g per 100 g shale oil produced. These data were used to generate a set of parameters for a mathematical model which simulated a heavy oil recycle loop.  相似文献   

15.
以乳化液稳定性为评价指标,研究了复配乳化剂、助乳化剂、助乳化剂与复配乳化剂质量比[m(C)m/(T)]及生物质裂解油在乳化液中质量分数的选择,并考察了HLB值、乳化温度、乳化时间、乳化方式、搅拌方式对乳化液稳定性的影响。实验结果表明:采用质量分数1.7%的T-85和乳化剂A的复配乳化剂,m(C)m/(T)为0.05的正辛醇为助乳化剂,在HLB值为8、乳化温度为20~40℃的条件下,将质量分数5%的生物质裂解油在柴油中高速乳化5m in,其中,乳化方式为T-85溶于生物质裂解油,乳化剂A溶于柴油,边搅拌柴油边加入生物质裂解油,再加入助乳化剂,乳化液的稳定性较好,稳定时间可达20 d。  相似文献   

16.
傅亮  杨基和  杜明育 《化工进展》2013,32(4):799-803
油浆经萃取分离得到以饱和烃为主的理想组分——抽余油。利用该油作为原料进行FCC反应,并与石蜡基重油从原料性质、反应工艺条件、产品分布及性质、再生剂性能等方面进行对比研究。结果表明:抽余油具有良好的FCC性能,其合适的反应条件为剂油比6.0、反应温度520 ℃、重时空速12.0 h?1;在各自最优工艺条件下,抽余油比重油液体收率增加1.69%,生焦率上升0.02%;在相同工艺条件即剂油比5.0、反应温度500 ℃、空速14.4 h?1,抽余油比重油液体收率增加0.19%,生焦率上升2.55%;与重油相比,抽余油FCC汽油辛烷值相当,FCC柴油十六烷值降低3.7,其再生剂失活程度较小。因此,抽余油完全可以替代重油作为FCC的原料,具有很好的工业应用前景。  相似文献   

17.
Preparation of laurel oil alkanolamide from laurel oil   总被引:1,自引:1,他引:1  
A low-temperature synthesis of laurel oil alkanolamides directly from laurel oil and ethanolamine was carried out in essentially quantitative yields. The ethanolamine/laurel oil molar ratio used was 10∶1. Even though amine served as a catalyst in the reaction, we used sodium methoxide at a ratio of 0.2–2% as a second catalyst. The reaction was complete in 1–9 h at room temperature. The identity of the amide was confirmed by IR and 13C NMR spectroscopy.  相似文献   

18.
World-wide use of sunflower oil is second only to soybean oil. Interest in domestic use as a premium salad oil is very recent. The high ratio of polyunsaturated-to-saturated fatty acids makes sunflower oil a premium salad oil. Sunflower oil, however, contains a small amount of high melting wax which must be removed to avoid settling problems. It is possible to produce a brilliant, dewaxed, deodorized sunflower oil with over a 100-hr cold test at 0 C. This quality oil can be produced by conventional caustic refining, dewaxing, bleaching and deodorization. A quality finished oil may also be produced by dewaxing and steam refining. This paper reviews various methods for processing sunflower oil from the crude state through the finished, dewaxed, deodorized salad oil. Presented at the ISF/AOCS Meeting, New York, April, 1980.  相似文献   

19.
20.
Conclusions Data obtained on the solubility of hydrogenated peanut oil in refined peanut oil and the behavior of the mixtures on cooling indicate that freedom from oil separation on storage is largely determined by the nature as well as the amount of solid crystals present in the oil. The results suggest that the best procedure for prevention of oil separation would involve shockchilling the molten mixture to produce the finely divided metastable crystalline modification followed by tempering at such a temperature as to permit transformation of the crystals into the more desirable higher-melting form without changing the finely divided state necessary for improved palatability. The data imply that under controlled conditions any amount of the high-melting modification of the hard fat incorporated in peanut oil above the solubility temperature in excess of 2% should produce a mixture free from oil separation under average storage conditions. The choice of the actual concentration of the hard fat, above the minimum amount, would depend upon the degree of plasticity desired. Ambient temperature to which the mixture is likely to be subjected will influence to a considerable extent the selection of the hard fat content. The information obtained is of fundamental importance in connection with the problem of oil separation in peanut butter. One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, U. S. Department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号