首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theoretical error rate performance of wireless communication systems are usually determined assuming that the perfect channel state information (CSI) is available at the receiver. However, in actual practice, the channel gains at the receiver are obtained via using some channel estimation (CE) techniques. Due to inherent presence of noise, the CE is not perfect resulting in the performance degradation. In this paper, we evaluate the error rate performance of an uplink multicarrier code-division multiple-access (MC-CDMA) system, considering different modulation techniques, where CE is performed using pilot symbol assisted (PSA) minimum mean-square error (MMSE) CE technique. The symbol error rate (SER) analysis of an uplink MC-CDMA system using multiuser detection techniques, such as MMSE and zero forcing (ZF), is presented under imperfect CE. Simulated results for SER are also shown to confirm the accuracy of the analytically derived results.  相似文献   

2.
In this paper, based on the imperfect channel state information (CSI), a cross layer design (CLD) scheme is developed for distributed antenna system (DAS) by combining adaptive modulation (AM) at the physical layer and automatic repeat request (ARQ) at the data link layer. The performance of DAS with CLD is investigated over composite fading channel which considers large-scale path loss and small-scale Rayleigh fading. With the performance analysis, the probability density function of the estimated signal-to-noise ratio (SNR) is derived, and then, the switching thresholds under a target packet error rate constraint are further derived. According to these results, and using numerical calculation, the closed form analytical expressions of average packet error rate and spectrum efficiency of DAS with CLD are, respectively, achieved, which will provide better evaluation way for the DAS performance. To decrease the performance loss caused by the conventional single estimation in the presence of imperfect CSI, the multi-estimation method is proposed to increase the system performance by exploiting previous channel estimation information. Numerical results corroborate our theoretical analysis, and the simulation is in consistence with the theoretical result. Moreover, the system performance can be increased by decreasing the estimation error and/or path loss. Especially, the multi-estimation method can enhance the performance effectively and enable the system to tolerate large estimation errors.  相似文献   

3.
Soft decision metric generation for QAM with channel estimation error   总被引:2,自引:0,他引:2  
The channel code bit log likelihood ratio (LLR) for soft decision decoding is derived for quadrature amplitude modulated signals (QAM). The effect of imperfect channel knowledge on soft decision decoding performance is studied. Our results indicate this effect increases with channel estimation error and/or QAM modulation level. A metric based on generalized log likelihood ratio (GLLR) is derived for soft decision channel decoding with imperfect channel knowledge. Numerical results show that the GLLR-based metric outperforms the conventional minimum distance decoding metric that does not take into account channel estimation error.  相似文献   

4.
Diversity combining with imperfect channel estimation   总被引:1,自引:0,他引:1  
The optimal diversity-combining technique is investigated for a multipath Rayleigh fading channel with imperfect channel state information at the receiver. Applying minimum mean-square error channel estimation, the channel state can be decomposed into the channel estimator spanned by channel observation, and the estimation error orthogonal to channel observation. The optimal combining weight is obtained from the first principle of maximum a posteriori detection, taking into consideration the imperfect channel estimation. The bit-error performance using the optimal diversity combining is derived and compared with that of the suboptimal application of maximal ratio combining. Numerical results are presented for specific channel models and estimation methods to illustrate the combined effect of channel estimation and detection on bit-error rate performance.  相似文献   

5.
In this letter, a union bound on the error probability of coded multi-antenna systems over block fading channels is derived. The bound is based on uniform interleaving of the coded sequence prior to transmission over the channel. Using this argument the distribution of error bits over the fading blocks is computed and the corresponding pair wise error probability (PEP) is derived. We consider coded systems that concatenate a binary code with a space-time block code (STBC). Coherent detection is assumed with perfect and imperfect channel state information (CSI) at the receiver, where imperfect CSI is obtained using pilot-aided estimation. Under channel estimation environments, the tradeoff between channel diversity and channel estimation is investigated and the optimal channel memory is approximated analytically. Results show that the performance degradation due to channel memory decreases as the number of transmit antennas is increased. Moreover, the optimal channel memory increases with increasing the number of transmit antennas.  相似文献   

6.
A cross-layer design (CLD) scheme for orthogonal space-time block coded MIMO systems with imperfect channel state information is presented by combining adaptive modulation and automatic repeat request, and the corresponding system performance is investigated over Ricean fading channel. The fading gain value is partitioned into a number of regions by which the modulation is adapted in terms of the region the fading gain falls in. The fading gain switching thresholds subject to a target packet error rate (PER) constraint are derived. According to these results, and using the generalized Marcum Q-function, we derive the theoretical formulae of average PER and spectrum efficiency (SE) of the system with CLD for both perfect and imperfect estimation in detail. As a result, closed-form expressions for average PER and SE are obtained. These expressions include some existing expressions in Rayleigh channel as special cases. With these expressions, the system performance in Ricean channel with perfect and imperfect estimation information can be evaluated effectively. Computer simulation for average PER and SE show that the theoretical analysis and simulation are consistent. The results show that the system performance will be effectively improved as Ricean factor increases, but it will be degraded as estimation errors increases.  相似文献   

7.
In this letter, we evaluate the system performance of a space‐time block coded (STBC) multicarrier (MC) DS‐CDMA system over a time selective fading channel, with imperfect channel knowledge. The average bit error rate impairment due to imperfect channel information is investigated by taking into account the effect of the STBC position. We consider two schemes: STBC after spreading and STBC before spreading in the MC DS‐CDMA system. In the scheme with STBC after spreading, STBC is performed at the chip level; in the scheme with STBC before spreading, STBC is performed at the symbol level. We found that these two schemes have various channel estimation errors, and that the system with STBC before spreading is more sensitive to channel estimation than the system with STBC after spreading. Furthermore, derived results prove that a high spreading factor (SF) in the MC DS‐CDMA system with STBC before spreading leads to high channel estimation error, whereas for a system with STBC after spreading this statement is not true.  相似文献   

8.
Channel information (CI) plays an important role in system design optimization. It is obtained through channel estimation process and hence, inevitably imperfect at a certain degree. Numerical evaluation of the outage performance of cooperative underlay cognitive networks under the presence of channel estimation error has been left open. This paper heals this literature gap with the proposal of a precise outage probability expression. Various results show the excellent match between analysis and simulation, and the advantage of the derived expression in studying the effect of CI imperfection on system performance.  相似文献   

9.
In this paper we derive closed-form expressions for the single-user adaptive capacity of generalized selection combining (GSC) system, taking into account the effect of imperfect channel estimation at the receiver. The channel considered is a slowly varying spatially independent flat Rayleigh fading channel. The complex channel estimate and the actual channel are modelled as jointly Gaussian random variables with a correlation that depends on the estimation quality. Three adaptive transmission schemes are analyzed: (1) optimal power and rate adaptation; and (2) constant power with optimal rate adaptation, and (3) channel inversion with fixed rate. In addition to deriving an exact expression for the capacity of the aforementioned adaptive schemes, we analyze the impact of channel estimation error on the capacity statistics and the symbol error rate for GSC systems. The capacity statistics derived in this paper are the moment generating function, complementary cumulative distribution function and probability density function for arbitrary number of receive antennas. Moreover, exact closed-form expressions for M-PAM/PSK/QAM employing GSC are derived. As expected, the channel estimation error has a significant impact on the system performance.  相似文献   

10.
In this paper, we analyze the performance of maximum ratio combining (MRC) systems with imperfect channel estimation in the presence of cochannel interference (CCI) with an arbitrary power interference-to-noise ratio (INR). The maximum combining weights are the imperfect estimates of the desired user's fading channel coefficients and are assumed to be complex Gaussian distributed. The quantified measure for estimation error is the correlation coefficient between the true fading channel coefficients and their estimates. Exact closedform expressions are derived for the probability density function (pdf) of the signal-to-interference-plus-noise ratio (SINR), as well as performance metrics including outage probability and the average symbol error probability (ASEP) for some modulation formats. Simulation results demonstrate the accuracy of our theoretic analysis.  相似文献   

11.
In this paper, we present a general analysis of the performance of selection combining (SC), switch-and-stay combining (SSC), and switch-and-examine combining (SEC) systems in Rayleigh fading channels with imperfect channel estimation (ICE). The complex channel estimate and the actual fading are modeled as jointly Gaussian random variables. For SC systems with channel estimation error, closed-form expressions are obtained for the error rates of M/sub s/-ary pulse amplitude modulation (PAM) and rectangular-quadrature amplitude modulation (QAM), and simple single integral formulas with finite integration limits are derived for the symbol error probability of arbitrary two-dimensional (2-D) modulation formats. These error probability expressions are then applied to three types of channel estimation errors potentially encountered in practical systems to study their impact on the performance of selection diversity. Moreover, single integral formulas with finite integration limits are derived for the performance of SSC and SEC systems with minimum mean square error (MMSE) channel estimation. Optimum switching thresholds for 2-D modulation formats with MMSE based switched combining are acquired through numerical computation.  相似文献   

12.
Based on the imperfect estimation information, the performance analysis of multi-input multi-out (MIMO) systems with rate-adaptive modulation and space?Ctime coding over flat Rayleigh fading channels is presented in this paper. The fading gain value is partitioned into a number of regions by which the modulation is adapted according to the region the fading gain falls in. Under a target bit error rate (BER) and constant power constraint, the fading gain region boundaries are given. By utilizing the minimum mean squared error estimation, the correlation between the channel gains and their estimates, which contributes to imperfect channel information, is evaluated. With this correlation, the probability density function of fading gain is obtained. Based on these results, the closed-form expressions for the SE and average BER are derived in detail, respectively. The theoretical expressions will be more accurate than the existing schemes, and they include perfect estimation as a special case. Numerical results show that the SE and BER of the system with imperfect estimation are worse than those with perfect estimation due to the estimation error. Moreover, the simulation results for SE and BER are in good agreement with the theoretical analysis.  相似文献   

13.
Uniform channel decomposition (UCD) has been proven to be optimal in bit error rate (BER) performance and strictly capacity lossless when perfect channel state information (CSI) is assumed to be available at both the transmitter and receiver side. In practice, CSI can be obtained by channel estimation at receiver and conveyed to transmitter via a limited-rate feedback channel. In such case, the implementation of traditional UCD by treating the imperfect CSI as perfect CSI cause significant performance degradation due to inevitable channel estimation error and vector quantization error. To overcome this problem, a practical robust UCD scheme was proposed in this paper, which includes two steps, firstly, a matching architecture was proposed to eliminate the mismatch between CSI at receiver (CSIR) and CSI at transmitter (CSIT), secondly, an MMSE based robust UCD scheme considering channel estimation error and vector quantization error as an integral part of the design was derived. Simulation results show that the proposed practical robust UCD scheme is capable of improving the BER performance greatly in the context of channel estimation error and vector quantization error compared with the traditional UCD scheme.  相似文献   

14.
在实际TD-LTE-Advanced系统中,针对非理想SRS信道,结合SRS信道估计误差的理论,建立SRS信道估计误差的模型,深入研究SRS误差对MIMO的性能影响。仿真分析显示,存在SRS误差的实际信道对协作多点传输(CoMP)有较大影响,但是相对其他基于波束赋形的MIMO模式仍能保证较高的增益。文章的研究工作分析非理想信道估计对系统性能的影响,并评估非理想SRS信道下多种MIMO模式的系统性能。  相似文献   

15.
In this paper, the performance of Prerake DS UWB multiple access system under imperfect channel estimation is studied. The signal model of the system is derived in matrix form, which clearly shows the components of inter-chip interference, inter-symbol interference and multiple access interference. The BER formula is derived based on this signal model and validated by simulations. We highlight that the BER performance does not monotonically decrease with the growth of data rate under imperfect channel estimation. The effect of imperfect channel estimation in different cases is also discussed.  相似文献   

16.
In this letter, optimal power allocation and capacity regions are derived for groupwise successive interference cancellation (GSIC) systems operating in multipath fading channels, under imperfect channel estimation conditions. It is shown that the impact of channel estimation errors on the system capacity is two-fold: It affects the receiver performance within a group of users, as well as the cancellation performance (through cancellation errors). An iterative power allocation algorithm is derived, based on which it can be shown that that the total required received power is minimized when the groups are ordered according to their cancellation errors, and the first detected group has the smallest cancellation error. Performance/complexity tradeoff issues are also discussed by directly comparing the system capacity for different implementations: GSIC with linear minimum-mean-square error (LMMSE) receivers within the detection groups; GSIC with matched filter (MF) receivers; multicode LMMSE systems; and simple all MF receivers systems.  相似文献   

17.
Imperfect channel state information (CSI) is among the main factors that affect system performance in wireless networks. In this paper, we investigate the impact of imperfect CSI on the performance of analog network coding (ANC) for a two-way relaying system based on opportunistic relay selection (ORS). An exact and generalized closed-form expression for system outage probability is presented in a Rayleigh flat-fading environment. To provide more insights, the closed-form asymptotic expression is then obtained. It is shown that the presence of channel estimation error causes outage probability maintain a fixed level even when a noiseless channel is adopted. Therefore, to mitigate the negative impact of imperfect CSI, we deduce the power allocation to minimize the system outage probability based on the knowledge of instantaneous channel information. Numerical results validate the accuracy of the derived expressions and highlight the effect of proposed power allocation algorithm compared with conventional uniform power allocation.  相似文献   

18.
Block-fading is a popular channel model that approximates the behavior of different wireless communication systems. In this paper, a union bound on the error probability of binary-coded systems over block-fading channels is proposed. The bound is based on uniform interleaving of the coded sequence prior to transmission over the channel. The distribution of error bits over the fading blocks is computed. For a specific distribution pattern, the pairwise error probability is derived. Block-fading channels modeled as Rician and Nakagami distributions are studied. We consider coherent receivers with perfect and imperfect channel side information (SI) as well as noncoherent receivers employing square-law combining. Throughout the paper, imperfect SI is obtained using pilot-aided estimation. A lower bound on the performance of iterative receivers that perform joint decoding and channel estimation is obtained assuming the receiver knows the correct data and uses them as pilots. From this, the tradeoff between channel diversity and channel estimation is investigated and the optimal channel memory is approximated analytically. Furthermore, the optimal energy allocation for pilot signals is found for different channel memory lengths.  相似文献   

19.
Orthogonal frequency division multiplexing (OFDM) is sensitive to carrier frequency offset and channel estimation error, which destroy the subcarrier orthogonality and give rise to intercarrier interference (ICI). This paper addresses the performance degradation due to imperfect parameters in an orthogonal frequency and code division multiplexing (OFDM-CDM) system with multiple transmit antennas. For the performance evaluation, the average bit error rate (BER) impairment due to imperfect channel information and frequency offset is investigated taking into account the effect of time-varying channels. Derived results show that a space-time block coded (STBC) OFDM-CDM system experiences a severe BER degradation regardless of the number of users.  相似文献   

20.
In this paper, the performance of maximum-likelihood multiuser detection in space-time-coded code-division multiple-access (CDMA) systems with imperfect channel estimation is analyzed. A K-user synchronous CDMA system that employs orthogonal space-time block codes with M transmit antennas and N receive antennas is considered. A least-squares estimate of the channel matrix is obtained by sending a sequence of pilot bits from each user. The channel matrix is perturbed by an error matrix that depends on the thermal noise and the correlation between the signature waveforms of different users. Because of the linearity of the channel estimation technique, the characteristic function of the decision variable is used to obtain an exact expression for the pairwise error probability, and by using it, an upper bound on the bit error rate (BER) is obtained. The analytical BER bounds are compared with the BER obtained through simulations. The BER bounds are shown to be increasingly tight for large SNR values. It is shown that the degradation in BER performance due to imperfect channel estimation can be compensated by using a larger number of transmit/receive antennas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号