首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
方芬  麻晓霞 《广东化工》2011,38(9):26-27,53
采用非等温差示扫描量热法(DSC)研究了偶联剂KH560处理的nano-SiO2填充BCE/BMI体系(nano-SiO2/BCE/BMI)的固化动力学,用Kissinger、Crane和Ozawa法确定固化动力学参数。结果表明,nano-SiO2/BCE/BMI体系的固化反应表观活化能为65.05 kJ.mol-1和6.61×106 s-1;反应级数为0.89;nano-SiO2/BCE/BMI体系的固化工艺参数:凝胶温度为116.33℃、固化温度为163.34℃及后处理温度为213.27℃。  相似文献   

2.
采用非等温差示扫描量热(DSC)法对纳米二氧化硅/环氧树脂/双马来酰亚胺/氰酸酯(nano-SiO2/EP/BMI/CE)树脂进行了固化反应动力学和固化工艺研究。通过Kissinger法和Ozawa法求得了nano-SiO2/EP/BMI/CE树脂体系固化反应动力学的表观活化能。结果表明:改性CE树脂体系的固化工艺参数为凝胶温度112℃、固化温度195℃及后处理温度213℃,进而确定了改性CE树脂体系的最佳固化工艺条件为"150℃/3 h→180℃/3 h→200℃/2 h";改性CE树脂体系的平均表观活化能为59.90 kJ/mol。  相似文献   

3.
通过示差扫描分析法(DSC)研究了SiO2/氰酸酯树脂(CE)/含有活性稀释剂的双马来酰亚胺树脂(BMI)复合材料的固化动力学,求得其固化工艺参数为:凝胶温度87.13℃,固化温度137.27℃,后处理温度203.58℃;用Kissinger法和Ozawa法求得其固化动力学参数为:表观活化能6.692kJ/mol,反应级数1.493,Arrhenius方程中的频率因子11.9445s-1。与CE/BMI体系对比表明,SiO2的加入可以降低CE/BMI体系的活化能,使其固化反应可以在较低温度下进行。  相似文献   

4.
以自制GO(氧化石墨烯)作为BCE(双酚A型氰酸酯)的改性剂制备相应的改性树脂。采用非等温DSC(差示扫描量热)法、Kissinger法、Crane法和升温速率-温度(β-T)外推法研究了GO对BCE固化动力学的影响,确定了纯BCE和GO/BCE体系的固化工艺条件和动力学参数。结果表明:纯BCE体系的凝胶温度为180.0℃、固化温度为201.0℃和后处理温度为221.1℃;GO/BCE体系的凝胶温度为158.8℃、固化温度为195.7℃和后处理温度为214.3℃;纯BCE和GO/BCE固化体系的活化能分别为102.38 kJ/mol和81.68 kJ/mol,反应级数分别为0.93和0.91。  相似文献   

5.
采用双酚A型氰酸酯(BCE),双马来酰亚胺(BMI)和两种环氧树脂(EP)制备了BCE/BMI/EP共聚体系,用傅里叶变换红外法对BCE/BMI/EP体系的共聚反应进行了反应动力学研究,分别对在150,180和200℃下的固化反应历程进行了红外跟踪,测得了各个反应单体的功能基团在不同温度下的转化率曲线,求得共聚反应的活化能为65.66 kJ/mol。  相似文献   

6.
偶联剂处理纳米二氧化硅( nano-SiO,)填充氰酸酯(BCE)/双马来酰亚胺的预聚体(BMI)体系制备出nano-SiO2/BCE/BMI复合材料,对比考察不同硅烷偶联剂处理的nano-SiO2对nano-SiO2/BCE/BMI复合材料的耐热性能、力学性能和介电性能的影响,并通过扫描电镜分析增韧机理.结果表明:偶联剂处理的nano-SiO2可提高nano-SiO2/BCE/BMI复合材料的冲击强度和热分解温度,尤以偶联剂KH560处理的效果最好,与未处理的相比冲击强度和热分解温分别提高了25.2%和9.6%,同时偶联剂KH-560处理的nano-SiO2/BCE/BMI复合材料的介电常数和介质损耗角正切值在1 ~40 MHz范围内都明显低于于不处理的nano-SiO2/BCE/BMI复合材料.  相似文献   

7.
为了提高nano-SiO2在树脂基体中的分散性,采用一种超支化聚硅氧烷修饰的纳米二氧化硅(HBP-SiO2)改性氰酸酯(CE)树脂。利用非等温差示扫描量热法(DSC)研究了HBP-SiO2/CE电子封装材料的固化动力学,求得其固化工艺参数和固化动力学参数分别为:凝胶温度150.17℃,固化温度197.81℃,后处理温度258.97℃;表观活化能11.22kJ/mol,反应级数0.75,频率因子18342.84s-1。研究表明,HBP-SiO2的加入可以降低CE的活化能,使其固化反应可以在较低温度下进行。  相似文献   

8.
采用非等温DSC(差示扫描量热)法、FT-IR(红外光谱)法、Kissinger-Crane法、Ozawa法和T-β(温度-升温速率)外推法研究了PEK(聚醚酮)改性BMI/DBA(双马来酰亚胺/二烯丙基双酚A)树脂体系的固化动力学过程。研究结果表明:采用Kissinger-Crane法得到的动力学参数与Ozawa法的求解结果相近,PEK改性BMI/DBA的固化反应遵循1级反应机制;BMI/DBA/PEK树脂体系的固化温度为130~210℃,后处理温度为240℃。  相似文献   

9.
采用差示扫描量热仪研究了不同牌号环氧树脂对双马来酰亚胺/氰酸酯(BMI/CE)树脂体系在不同升温速率下的固化反应。在保持BMI/CE质量比为1/2的前提下,加入同等质量不同牌号环氧树脂,运用Kissinger法、Ozawa法和Crane法求得不同体系的活化能、反应级数等动力学参数。结果表明,用环氧树脂(AG-80)改性的BMI/CE树脂体系的活化能的平均值为81.55kJ/mol,反应级数为0.93;环氧树脂(TDE-85)改性的BMI/CE树脂体系的活化能的平均值为69.25kJ/mol,反应级数为0.92;环氧树脂(TDE-85)改性的BMI/CE树脂体系更有利于固化工艺的实现。  相似文献   

10.
采用非等温DSC(差示扫描量热)法研究BMI(双马来酰亚胺)改性PF(酚醛树脂)体系的固化动力学,借助升温速率-温度(β-T)外推法和红外光谱(FT-IR)跟踪固化反应过程,确定了BAN(BMI改性PF)体系的固化工艺和固化动力学参数。结果表明:BAN的固化工艺为"120℃/2 h→140℃/2 h→160℃/2 h→180℃/2 h",后处理工艺为220℃/3 h,BAN固化体系的动力学参数是表观活化能Ea=123.4 kJ/mol、频率因子A=1.96×1012s-1和反应级数n=1.05;根据n级动力学反应模型求解出该树脂的反应动力学方程,其计算值与试验值基本吻合,说明该模型能较好描述BAN的固化反应过程。  相似文献   

11.
二氧化硅粉体改性E—Si/CE固化动力学的研究   总被引:1,自引:0,他引:1  
采用非等温差示扫描量热法(DSC)研究了纳米二氧化硅(SiO2)和微米SiO2的混合粉体改性环氧基硅烷(E—Si)/氰酸酯(CE)树脂体系固化动力学;用Kissinger、Crane和Ozawa法确定固化动力学参数。结果表明,Kissinger式求得的表观活化能为66.09kJ/mol;Ozawa法求得的表观活化能为7001kJ/mol;根据Crane理论计算该体系的固化反应级数为0.89。计算了不同升温速率所对应的不同温度的频率因子和反应速率常数;求得了改性体系的固化工艺参数:凝胶温度130.74℃、固化温度160.96℃和后处理温度199.16℃,确定了体系的最佳固化工艺。与E—Si/CE体系对比表明,SiO2的加入可以降低E—Si/CE体系的活化能,使其固化能在较低温度下进行。  相似文献   

12.
聚酰亚胺改性环氧树脂/酸酐体系固化动力学研究   总被引:1,自引:1,他引:1  
采用非等温差示扫描量热(DSC)法研究了聚酰亚胺(PI)改性环氧树脂(EP)/酸酐体系的固化反应动力学及其固化工艺。通过Kissinger法、Ozawa法和Crane法计算出该体系的动力学参数。结果表明:该固化体系具有较高的活性,其固化工艺条件为"80℃/2 h→120℃/2 h",后处理工艺为150℃/2 h;采用Kissinger法和Ozawa法计算出该体系的平均表观活化能为8.24 kJ/mol;结合Crane方程计算出该体系的反应级数为0.95,近似一级反应。  相似文献   

13.
高固含量聚醚醚酮改性酚醛树脂固化动力学研究   总被引:2,自引:0,他引:2  
采用溶液聚合法合成了高固含量(>80%)聚醚醚酮(PEEK)改性酚醛树脂(PF),用非等温DSC(差示扫描量热)法和T-β(温度-升温速率)外推法对其固化反应动力学过程进行了研究,并根据Kissinger方程、Ozawa方程和Crane方程等计算出该固化反应的动力学参数。结果表明:改性树脂的凝胶化温度为136.68℃,固化温度为167.16℃,后处理温度为197.39℃;其固化体系的表观活化能为100.02 kJ/mol,频率因子为1.84×106 s-1,反应级数为0.94(近似于1级反应)。  相似文献   

14.
采用非等温DSC法对一种纤维缠绕用环氧树脂体系进行了固化动力学研究。基于不同升温速率下的测试数据,确定了固化工艺参数,建立了n级动力学模型,并比较了通过Kissinger方程和Ozawa方程得到的活化能。研究表明:该树脂体系凝胶化温度为89.44℃,固化温度为114.5℃,后处理温度为155.04℃;固化反应过程符合n级动力学模型。  相似文献   

15.
采用非等温DSC(差示扫描量热)法对EP(环氧树脂)/改性DDM(4,4′-二氨基二苯基甲烷)体系的固化反应过程进行了跟踪。采用Kissinger、Ozawa、Crane和T-β(温度-升温速率)外推法等得到该固化体系的动力学参数和固化工艺条件,并对其力学性能和热变形温度进行了测定。结果表明:EP/改性DDM体系的表观活化能为49.43 kJ/mol,反应级数为0.869,固化条件为"85℃/2 h→125℃/2 h",热变形温度为130℃;与EP/DDM体系相比,该固化体系的表观活化能降低了7.0%,热变形温度下降了16.1%,拉伸强度和压缩强度提高了20%以上,而弯曲强度和弯曲模量基本上保持不变。  相似文献   

16.
环氧树脂固化动力学的非等温DSC研究   总被引:5,自引:0,他引:5  
用非等温DSC对环氧树脂在动态升温过程中的固化动力学进行了研究,采用Kissinger方程对固化动力学模型参数中固化反应活化能、反应级数和指前因子进行了计算,并用Ozawa法对固化反应活化能进行了验证,计算结果表明,EP/DDS固化反应符合n阶固化动力学模型,结合不同升温速率下的特征温度,对环氧树脂的固化条件进行了优化。  相似文献   

17.
PES改性低温固化双马树脂固化动力学研究   总被引:1,自引:1,他引:0  
以聚醚砜(PES)作为双马树脂(BMI)的增韧剂,以3,3′-二烯丙基双酚A(DP)作为改性剂,采用非等温DSC(差示扫描量热)法,研究了PES改性低温固化BMI/DP体系的固化反应动力学。结果表明:根据Kissinger方程、Crane方程和n级动力学模型计算出BMI/DP体系的固化动力学方程为dα/dt=2.1×10~(11)(1-α)~(1.07)e×p(-13.89×10~3/T);采用红外光谱(FT-IR)法跟踪固化反应过程,确定了BMI/DP体系的固化工艺为"130℃/3 h→140℃/1h→160℃/2 h→180℃/2 h"。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号