首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
面能量对激光—电弧复合焊接焊缝及熔滴过渡的影响   总被引:1,自引:0,他引:1  
引入面能量的定义,从激光功率、电弧参数和焊接速度等方面来研究面能量的变化对焊缝熔深、熔宽、焊缝成形系数和熔滴过渡的影响,试图建立激光能量与电弧能量之间的最佳配比关系以及面能量与熔深的定量关系。采用高速摄像系统观测熔滴过渡模式和等离子体形态的变化,并采集焊接过程中的电弧和熔滴图像;利用激光共聚焦显微镜观察焊缝形貌,并测量焊缝熔宽、熔深等数据。试验研究发现:激光与电弧两热源之间存在最优匹配范围;电弧电压与焊接电流之间存在U(15 1)0.05I的关系式;焊接速度的降低与焊缝熔深的增加并非线性关系,可选择的焊接速度是一个区间,该区间内存在一个最佳的焊接速度,并对应一个最佳的面能量。因此,在具体的激光—电弧复合焊接中,需要根据板厚、接头形式等确定激光与电弧的能量参数,选择合适的面能量。  相似文献   

2.
采用高速摄像系统观测熔滴过渡模式和等离子体形态的变化,并采集焊接过程中的电弧和熔滴图像,利用电弧分析仪记录电弧信号,通过试验深入研究激光功率对CO2激光-熔化极活性气体保护焊(Metal active gas,MAG)电弧复合焊接的电弧形态、焊接稳定性、熔滴过渡频率的影响。研究表明,焊接电流的增加减小了实际热源间距,并且实际热源间距在2 mm附近效果最佳;带电粒子在主辅导电通道内的运动产生扰动或漂移、焊接模式的跳变和过渡模式的改变是电流、电压波形出现紊乱和尖角波形的主要原因;激光的加入降低了熔滴过渡频率和过渡稳定性;焊接电流为160A、180 A时,激光-电弧复合焊接的熔滴过渡频率均随着激光功率的增加而先减小后增大,但其过渡频率介于160 A和180 A电弧焊接时熔滴过渡频率之间。  相似文献   

3.
利用搭建的激光-熔化极惰性气体保护(Metal inert-gas,MIG)双丝复合焊接系统进行焊接试验。在试验中,主要研究激光功率、送丝速度、光丝间距和离焦量等几个主要变量对复合焊接稳定性、电弧特性和熔滴过渡的影响规律。分别选取电弧电压变异系数、电弧偏转角、熔滴过渡方式及过渡频率作为评价参量对稳定性、电弧特性和熔滴过渡进行分析。研究发现,随着激光功率增加,电弧偏转角先减小后增加,在1 000 W附近偏转角最小,焊接过程最稳定。引导丝熔滴始终为粗滴过渡,而跟随丝熔滴为粗滴过渡+少量短路过渡,熔滴过渡频率呈现先增加后下降的趋势。在送丝速度为4 m/min时引导丝和跟随丝的电弧稳定性最好,电弧偏转角先减小后增加最终趋于稳定。在离焦量为–1 mm时,引导丝和跟随丝熔滴过渡频率均达到最大值,分别为8.6Hz和6.3Hz。  相似文献   

4.
纵向磁场对MAG焊电弧及熔滴过渡的控制作用   总被引:3,自引:0,他引:3  
将纵向磁场应用于98%Ar+2%O2和80%Ar+20%CO2保护的射流过渡MAG焊,借助高速摄像手段研究外加纵向磁场对MAG焊电弧形态及运动特征的影响规律,揭示纵向磁场对MAG焊电弧的作用本质在于压缩电弧.通过分析液流束末端的液态金属的受力情况,确立纵向磁场作用下MAG焊的熔滴过渡机制.试验结果表明,外加纵向磁场使得相对"静态"的锥形MAG焊电弧转变为高速旋转的螺旋状电弧,并且随着励磁电流的增大,电弧旋转角速度加快、可见弧长缩短、电弧电场强度提高.同时外加纵向磁场的引入还能够降低焊接电流、提高熔滴过渡频率和焊丝熔化系数.外加纵向磁场对射流过渡MAG焊接过程稳定性的影响特点与所采用的保护气体的物理性质相关.  相似文献   

5.
以电弧光谱信号传感MIG/MAG焊熔滴过渡的工艺适应性   总被引:1,自引:0,他引:1  
熔滴过渡控制的实现,取决于获得宽工艺适应性的熔滴过渡传感信号。通过试验,获取了熔化极气体保护焊电弧,在不同熔滴过渡形式下的光谱分布、谱线信号的时域波形和频域特征。对试验结果的分析表明,电弧光谱信号在上述诸方面均表现出对不同熔滴过渡形式的适应性,是一种有潜力的高品质熔滴过渡信号源。  相似文献   

6.
分别研究较高功率密度的CO2激光-电弧复合焊接和在含1%CO的密闭室中低激光功率密度的CO激光-电弧复合焊接。研究表明,前者能获得比单用激光焊接更大的熔深,后者相对单个电弧焊接方法的焊接能力大大增强。这两种激光-电弧复合焊接方法各自在某些领域能得到良好的应用,具有很好的发展前景。  相似文献   

7.
双旁路耦合电弧MIG焊熔滴过渡受力分析   总被引:2,自引:0,他引:2  
针对双旁路耦合电弧熔化极惰性气体保护(Metal inert gas,MIG)焊过程,使用高速摄像采集不同旁路电流下的熔滴过渡图像,通过图像处理提取熔滴过渡数据信息,并对熔滴所受的主要作用力进行定量计算。根据计算结果对比分析不同参数下熔滴受力的动态变化情况,研究旁路电弧对熔滴过渡的促进机理。结果表明,在焊接总电流较大的情况下电磁力对双旁路耦合电弧MIG焊熔滴过渡的影响最显著,旁路电弧可以促进熔滴上弧根面积的扩展和熔滴缩颈的形成,通过增加向下的电磁力来促进熔滴过渡,且旁路电流越大旁路电弧对熔滴过渡的促进作用越明显;在焊接总电流不变的情况下,随着旁路电流的增加熔滴过渡频率随之增加,熔滴尺寸随之减小,熔滴过渡形式逐渐由大滴过渡转变为喷射过渡。  相似文献   

8.
基于脉冲GMA电弧检测了电弧填丝增材制造过程中与熔滴过渡相关的电弧电流、电弧电压和声发射信号,研究了电弧脉冲作用下的铝合金熔滴射滴过渡特征,提出了一种可对处于射滴过渡模式下的熔滴尺寸、电弧力和熔滴沉积率进行计算的方法,并分析了沉积层的成形质量特征。研究结果表明,利用检测获得的电弧电压、电弧电流信号和声发射信号可以对处于射滴过渡模式下的熔滴过渡过程及其特征进行区分。在本研究条件下,作用在过渡熔滴上的电弧力随电弧功率增加而递增。电弧力的增加将限制熔滴尺寸的增大,从而在电弧功率递增时呈现熔滴尺寸的递减和熔滴过渡频率的递增。同时,电弧功率增加,使热输入增大,射滴过渡熔滴对熔池的冲击增强,容易造成熔滴过渡形成的沉积层坍塌,从而使熔滴沉积层高度递增的趋势减缓,形成的沉积层显微组织明显粗化。  相似文献   

9.
冷金属过渡(CMT)电弧增材制造技术具有沉积效率高、制造成本低等优势,在航空用大尺寸构件的快速成型领域应用前景广阔。对于电弧增材制造大型构件需采用大电流来进一步提高沉积效率,但在此高电流模式下电弧放电过程对熔滴过渡行为的影响机理尚不明确。因此,本研究采用高速摄像仪观察了电弧增材制造过程中电弧形态及熔滴过渡行为,同时通过建立电弧模型及熔滴过渡模型,分析了在不同电流波段及工艺参数下熔滴过渡频率及熔滴尺寸变化规律,最终揭示了电弧放电过程中电流密度、洛伦兹力等物理因素对熔滴过渡的作用机理。结果表明,电弧宽度与洛伦兹力决定熔滴在电弧放电过程中的受力大小,进而决定熔滴尺寸及其过渡频率。随着送丝速度从5.5 m/min增大至7.0 m/min时,电流峰值持续时间增加了1倍左右,同时电弧宽度与电流密度的随之增加,使得熔滴过渡过程中电磁力上升,熔滴尺寸下降14%且射滴过渡频率增加了3~4倍。当瞬时电流进入熄弧阶段时,熔滴过渡形式转变为短路过渡。随着送丝速度的增加,短路过渡频率从29 Hz减少至20 Hz。  相似文献   

10.
利用焊接质量分析仪采集气体保护焊焊接过程中瞬时电流和电压波形特征,利用此波形特征能够定性指出熔滴过渡模式,从而实现在线监测和控制金属熔滴的过渡模式,实现良好的焊接工艺参数。  相似文献   

11.
高强钢厚板激光-GMAW复合双面同步横焊特性研究   总被引:3,自引:0,他引:3  
针对30 mm厚船用高强钢10Ni5Cr Mo V对接接头横焊应用需求,开展激光-熔化极气体保护电弧(Gas metal arc welding,GMAW)复合双面同步横焊特性研究。研究结果表明,针对横焊位姿因重力、非对称坡口对熔滴、电弧的影响,利用激光对电弧的吸引和收缩作用,通过减小光-丝间距,有效地抑制了电弧侧壁燃弧,熔滴在电磁力和等离子流力的作用下,稳定过渡到熔池中,实现了熔滴过渡稳定性控制,解决了激光-GMAW复合横焊位姿电弧偏离和熔滴下落等过程控制难题与侧壁未熔合问题;厚板激光-GMAW复合双面同步横焊包括打底层和填充层焊接,其中打底层焊接是保证接头焊接质量的关键;采用激光-GMAW复合双面同步横焊新方法,4道焊接完成了30 mm厚船用高强钢10Ni5Cr Mo V横焊位姿的高强、高效连接。焊缝表面成形良好,无裂纹、未焊透和侧壁未熔合等缺陷。接头的抗拉强度高于母材,且其–50℃冲击吸收能量为57.3 J。  相似文献   

12.
活性激光电弧复合焊接法研究   总被引:1,自引:0,他引:1  
为了进一步提高激光电弧复合焊接的熔深,提出活性激光电弧复合焊接法。在氧气的保护下,用小功率光纤激光在待焊焊件表面进行预熔处理,使表面熔化生成一层氧化层,然后用激光电弧复合焊接覆盖氧化层,达到增加熔深的目的。结果表明,激光预熔后进行激光电弧复合焊接,电弧明显收缩,熔深增加1.5倍左右,表面成形良好。激光预熔后,焊缝含氧量增加,熔池表面张力温度系数由负变正,使得复合焊接熔深增加。研究工艺参数对焊缝熔深和熔宽的影响,随着激光预熔功率的增加,熔深增加熔宽减小;随着电流的增加,熔深熔宽都增加,但激光预熔后的焊道增加更快。随着复合焊接速度的增加,熔深和熔宽都减小。随着复合焊接中激光功率的增加,熔深增加,对熔宽的影响较小。利用活性激光电弧复合焊接法,可以得到较为细小的焊缝组织,提高焊接接头的抗拉强度,能达到母材抗拉强度的95%,且面弯和背弯180°后未出现裂纹,表明接头具有良好的韧性。  相似文献   

13.
以高强钢为试验材料,采用CO2激光-熔化极活性气体保护焊(Metal active gas arc welding,MAG)复合焊接方法,研究原位内生Ti C对高强钢焊接接头组织和性能的影响。研究结果表明:原位内生Ti C颗粒能够细化焊缝组织,对高强钢焊接接头的综合性能有很大的提高,其中wCNT∶wTi=15%的焊缝上部中心区主要由树枝晶组成,二次枝晶平均宽度为8.4?m。焊缝下部主要由大量的等轴晶组成。而未加粉焊缝上部中心区主要由大量柱状晶组成,柱状晶平均宽度为13.25?m焊缝下部主要由大量细小柱状晶组成。通过断口分析知,wCNT∶wTi=15%焊缝处的断口处产生大量细小韧窝,焊接接头主要是韧性断裂,而未加粉的焊接接头主要是脆性+韧性断裂。通过力学性能测试知,原位内生Ti C对高强钢激光-电弧复合焊接接头的冲击吸收能量、弯曲能量度及硬度都有明显提高,但是对抗拉强度影响不大。  相似文献   

14.
采用激光-电弧复合热源对8 mm厚的高氮钢板进行焊接试验,研究不同保护气体组成对焊缝形貌、熔滴过渡特征和气孔缺陷的影响。结果表明,采用纯氩做保护气体时,熔滴过渡模式以射流过渡为主,并伴有少量排斥过渡;保护气体成分为Ar+N2混合气体时,熔滴过渡模式为短路过渡;保护气体成分为Ar+N2+O2混合气体时,熔滴过渡模式为射流过渡。保护气体的组成对焊缝气孔缺陷也存在一定的影响,保护气体为纯氩时,焊缝气孔率最大,其值为2.52%;保护气体为90% Ar+10% N2时,气孔率最低,仅为0.16%;Ar+N2中添加1%的O2后,气孔率略有升高,但与纯氩时相比,气孔率仍下降明显。采用Ar+N2+O2三元混合气作为保护气体时,能够有效抑制焊缝内气孔数量,同时可以改善熔滴过渡模式,提高焊接过程稳定性。  相似文献   

15.
在激光-MAG复合焊中,金属蒸气和背部熔池包含着大量的焊接状态信息。以316不锈钢和400低碳钢为试验对象,作异种材料复合焊接,并应用高速摄像机获取焊接过程中正面金属蒸气和背部熔池的实时图像。提取金属蒸气面积形态特征,结合背部熔池图像同步分析金属蒸气周期性变化规律并研究金属蒸气和焊接状态、焊缝成形之间的关系。以灰度共生矩阵(GLCM)方法分析图像纹理特征,并用能量、对比度和熵三个特征分析背部熔池与焊缝成形之间的关系。结果表明,所分析方法能有效反映金属蒸气的变化机理,金属蒸气和背部熔池与焊接状态之间的关联,为在线检测复合焊接质量提供依据。  相似文献   

16.
采用光纤式光谱仪,对激光—MAG复合焊等离子体辐射,进行空间分布200~1100nm间光谱采集。选取特定谱段辐射积分,给出其在紫外辐射(FeII)、可见光辐射(FeI)、红外辐射(ArI)各扫描层面辐射强度分布。进一步结合高速摄像,研究激光—MAG复合焊的耦合机理。研究结果表明,激光与MAG复合后,其等离子体在焊接电弧中心位置的辐射增强(其中紫外和可见光谱段更明显),形成一个辐射梯度较大的辐射增强区。FeI、FeII对应谱段的电弧辐射区间增宽,这种现象在激光作用的电弧前沿更明显。特定谱段辐射的面分布表明,激光—MAG耦合后,辐射在熔池附近及电弧中部的辐射增强,而在电弧上部的辐射减弱。耦合后的等离子体能量分布更集中于中心部位和熔池附近,复合等离子体Fe辐射区间的增宽,也为电弧稳定提供电离通道。耦合后等离子体辐射分布,使得激光复合焊焊缝成形改善、电弧稳定性增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号