首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过水热法在锂硫电池正极材料硫碳复合物表面包覆纳米金属氢氧化物抑制多硫化物的穿梭,很好地改善了电池的循环性能。利用扫描电镜(SEM)、恒流充放电和交流阻抗等方法比较了不同包覆层氢氧化铝、氢氧化钴、氢氧化铈对锂硫电池性能的影响。其中,用氢氧化铝包覆的硫碳复合材料显示了较好的电化学性能,在100 m A/g充放电条件下,首次充放电比容量为1 192 m Ah/g,80次循环后放电比容量为797 m Ah/g,容量保持率达67%。0.5 C条件下,放电比容量达754 m Ah/g。  相似文献   

2.
以过渡金属硫酸盐和氢氧化锂为原料,采用共沉淀法合成锂离子电池富锂正极材料0.5Li_2MnO_3·0.5LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明:900℃煅烧10 h合成的样品具有较好的层状结构和优异的电化学性能;在30℃以0.1 C的电流密度充放电,2.0~4.8 V电位范围内首次放电比容量高达270.1 m Ah/g,循环100次后放电比容量为212.6 m Ah/g;该材料还表现出较好的倍率性能,以5 C充放电时还有120 m Ah/g的放电比容量。  相似文献   

3.
为了提高锂硫电池的高倍率放电性能,采用了多孔的泡沫镍作集流体。通过循环伏安测试可知,泡沫镍作集流体时泡沫镍在充放电过程中并没有参与反应,而是相对于铝箔集流体降低了电池的氧化峰电势和提高了还原峰电势。充放电测试可知:泡沫镍作集流体时,锂硫电池表现出良好的高倍率放电性能,在1 C充放电下,以泡沫镍为集流体的锂硫电池首次放电比容量达到940 m Ah/g,经过100次循环后其放电比容量保持在508 m Ah/g左右。  相似文献   

4.
V_2O_5具有容量高、循环稳定、易于制备成薄膜等特点,是全固态薄膜锂电池理想的正极材料。采用磁控溅射法,以V_2O_5为靶材制备了薄膜,研究了溅射气体Ar/O_2对薄膜结构、形貌及电化学性能的影响,优化了薄膜制备工艺。最终采用磁控溅射法依次沉积集流体薄膜、钒氧化物薄膜、固态电解质薄膜,真空热蒸发金属锂薄膜,成功制备了Al/V_2O_5/Li P ON/Li/Cu全固态薄膜锂电池。薄膜电池在1.7~3.4 V电压范围内,以10μA/cm~2恒电流充放电测试,电池比容量达到25μAh/cm~2,稳定循环超过500次。  相似文献   

5.
王朕  汝强  侯贤华  胡社军 《电池》2016,(5):259-262
以石墨烯为基底,用水热法制备蜂窝状钴酸锌(ZnCo_2O_4)/还原氧化石墨烯(rGO)微球复合材料。用XRD、SEM分析复合材料的结构和形貌,用恒流充放电及循环伏安法测试复合材料的电化学性能。石墨烯的加入,可改变ZnCo_2O_4颗粒的形貌,并改善复合材料作为锂离子电池负极活性物质的电化学性能。以500 m A/g的电流在0.01~3.00 V循环,复合材料的首次放电比容量为1 326.7 m Ah/g,第70次循环的放电比容量为1 212.4 m Ah/g。  相似文献   

6.
采用共沉淀-水热处理路线合成以ClO_4~-为层间阴离子的镍铝层状氢氧化物,通过离子交换的方法制备以Cl~-、NO_3~-、SO_4~(2-)和CO_3~(2-)为阴离子的层状氢氧化物(LDH)。用XRD、IR和SEM测试分析材料的结构、层间阴离子和形貌,用循环伏安、恒流充放电测试研究电化学性能。相对于其他阴离子,离子交换层间阴离子为CO_3~(2-)时,以800 m A/g的电流在0~0.6 V循环,首次放电比容量为182.7 m Ah/g,第9次循环达到最大放电比容量328.7 m Ah/g,随后缓慢降低,第100次循环的放电比容量为265.1 m Ah/g,最大单个镍原子电子转移数为1.52。  相似文献   

7.
选用LA132、海藻酸钠、β-环糊精和PVDF四种粘合剂应用于锂硫电池正极中,采用恒流充放电、交流阻抗和扫描电镜(SEM)等方法考察了不同粘合剂对锂硫电池电化学性能的影响。其中以海藻酸钠为粘合剂的正极循环性能和倍率性能最为优异,在电流密度100 m A/g下,115次循环后放电比容量为757 m Ah/g,容量保持率达70%。在1 000m A/g电流密度下,放电比容量达到600 m Ah/g。  相似文献   

8.
混合电动汽车用锂离子电池的研究   总被引:1,自引:0,他引:1  
杨娟玉  卢世刚  刘莎  庞静 《电池》2007,37(2):104-106
以LiMn2O4为正极材料,研制了17 Ah圆柱形锂离子动力电池以及336 V/17 Ah动力电池组.性能测试结果表明:单体电池25.0 C放电时持续放电比功率达到900 W/kg,而脉冲放电(480 A,15 s)比功率达到1 320 W/kg;1.0 C循环1 000次后的容量保持率达80.24%;在-25℃与55℃下1.0 C放电容量分别为25℃下的74.29%和96.72%;电池在过充、针刺和挤压的情况下不爆炸,不起火.90只单体电池构成的电池组的首次充放电容量分别为18.44 Ah和17.47 Ah.  相似文献   

9.
研究四氟硼酸锂(LiBF_4)和二氟草酸硼酸锂(LiODFB)混合锂盐电解液用于磷酸铁锂(LiFePO4)锂离子电池时的低温-20℃性能。探讨电导率与电解液组成、温度的关系;通过循环伏安、充放电、倍率性能及电化学阻抗谱(EIS)测试,比较不同电解液体系中LiFePO_4正极在25℃和-20℃的放电比容量、循环稳定性等。在25℃和-20℃下于2.5~4.2 V充放电,LiFePO_4电极在LiBF_4/Li ODFB基电解液体系中的电化学性能较好:在25℃时以1.0 C倍率充放电,混合盐基电解液电池的首次放电比容量为140 m Ah/g,优于六氟磷酸锂(Li PF6)基电解液的130.5 m Ah/g;-20℃时0.1 C倍率下,首次放电比容量为101.7 m Ah/g,100次循环的容量保持率为86.62%,优于Li PF6基电解液的97.4 m Ah/g和60.57%。  相似文献   

10.
在强阴极极化下,以析出的氢气泡为模板,电沉积制备了La-Ni贮氢合金薄膜电极。采用扫描电子显微镜(SEM)及X射线衍射仪(XRD)对合金薄膜电极的表面形态和结构进行了表征;以循环伏安、恒电流充放电实验考察了合金薄膜电极的电化学行为。结果表明,合金薄膜电极含La Ni5相,电化学吸放氢性能好,最高电化学放电比容量达286 m Ah/g,无需活化过程,首次充放电即可达到最高放电容量,作为氢镍电池的负极,在1.2 V附近有一个平稳的放电平台。  相似文献   

11.
用溶胶-凝胶法合成锂离子电池用富锂正极材料Li[Li_(0.2)Ni_(0.15)Mn_(0.55)Co_(0.1)]O_2,通过XRD、SEM、电感耦合等离子体发射光谱(ICP-OES)和电化学性能测试考察煅烧温度对合成材料结构和性能的影响。900℃下制备的材料具有典型的α-Na Fe O2层状结构、较好的晶型结构及良好的电化学性能。在2.0~4.8 V充放电,20℃下的0.10 C首次放电比容量为235.4 m Ah/g,库仑效率为78.5%;依次以0.10 C、0.20 C、0.50 C、0.75 C和1.00 C循环10次,再以0.20 C放电,首次1.00 C放电比容量为149.7 m Ah/g,最后一次0.20 C放电比容量为首次0.10 C放电比容量的85.9%。  相似文献   

12.
张春娥  田伟  赵勇  祝成炎 《电池》2016,(5):271-274
选取3种熔喷非织造布,观察表面形态,测试厚度、面密度、孔隙率、吸液率及电化学性能。厚度为0.23 mm、面密度为41 g/m~2的试样2所组装的锂离子电池,具有较好的性能。在2.0~4.3 V充放电,电流为0.5 C时的放电比容量达到115 m Ah/g,在大电流放电时仍有较好的性能,如电流为5.0 C时,放电比容量约为80 m Ah/g。  相似文献   

13.
郭建强  李晶  黄叶菊  彭汝芳 《电池》2016,(3):133-136
分别以气相生长碳纤维(VGCF)、多壁碳纳米管(MWCNT)和活性炭(AC)作为单质硫载体,通过高温热处理制备锂硫电池用S/C正极材料。采用SEM、XRD、热重分析(TG)、循环伏安、电化学阻抗谱(EIS)和恒流充放电等方法,分析复合材料的结构及电化学性能。碳材料形态对锂硫电池的放电比容量和循环性能有重要影响,S/VGCF复合材料的电化学性能较好。以0.1 C的电流在1.5~3.0 V充放电,首次和第100次循环的放电比容量分别为1 204.87 m Ah/g、547.62 m Ah/g。  相似文献   

14.
实验采用的TiO_2纳米材料是通过水热合成法制备并进行碳化得到。将所得的TiO_2纳米材料作为硫载体,用熔融吸附法缓慢将硫单质融入载体中,最后得到C/S/TiO_2复合正极材料。材料的结构表征主要采用扫描电镜(SEM)和X射线衍射仪(XRD),结果表明,TiO_2基体由大小在40~60 nm范围内的颗粒聚集成薄片,薄片为微米级。实验采用335m A/g的电流密度对组装的扣式电池进行电化学性能测试。结果表明,C/S/TiO_2复合材料的首次放电比容量可达到1 512 m Ah/g,经过100次循环后放电比容量为710 m Ah/g;当采用0.5 C放电时,电池的放电比容量为869 m Ah/g,随着充放电倍率由0.8 C增加到2 C,电池的可逆比容量依次为794、722、668 m Ah/g,表明通过加入TiO_2,在大的充放电密度下电池的循环稳定性得到了很大的提高。  相似文献   

15.
刘伯峥  李海婷  曾涛  伍绍中 《电池》2021,51(5):482-485
用高涂覆量39.50 mg/cm2及低涂覆量35.50 mg/cm2两种磷酸铁锂(LiFePO4)电极,制备额定容量为4.0 Ah的LiFePO4软包装锂离子电池,考察涂覆量对电池高低温充放电、倍率充放电、高温存储及循环性能的影响.电极涂覆量增加,导致电池内阻增大,放电电压平台降低,放电能量下降约1%~2%;电池整体性能没有特别明显的劣化,尤其是循环寿命.  相似文献   

16.
采用不同钠源在醋酸盐燃烧下合成P2结构的Na_(2/3)Ni_(1/3)Mn_(2/3)O_2正极材料。通过XRD、SEM及循环伏安、电化学阻抗谱等测试,分析钠源对材料结构、形貌及电化学性能的影响。以碳酸钠为钠源合成的样品的层状结构较好、颗粒粒径较均一,电化学性能最好。该材料以0.1 C在2.0~4.0 V循环,首次放电比容量为89.8 m Ah/g,库仑效率为123.3%。1.0 C首次放电比容量为74.3 m Ah/g,第50次循环的放电比容量为71.1 m Ah/g,容量保持率为95.7%。  相似文献   

17.
用叠片工艺制备了标称容量为25 Ah的磷酸铁锂(LiFePO4)锂离子电池。对电极材料、极片表面形貌和电池的电化学性能进行分析。在正极面密度为2.40 g/dm2,压实密度为2.60 g/cm3时,以0.50C在2.60~3.40 V循环,所制备的单体电芯的最大放电容量为26.56 Ah;正极材料的放电比容量为132.80 mAh/g,循环100次的容量保持率为95.52%。挤压、针刺、过充和短路等测试结果表明:制备的电池具有良好的安全性能。  相似文献   

18.
采用高温固相法合成LiFePO4/C正极材料,并对其物理特性和电化学性能进行了分析。研究结果表明,该材料具有较高的振实密度、均匀的粒度分布、较小的比表面积,且具有单一的橄榄石结构,没有其它杂相。实验电池测试表明,材料具有较高的放电比容量及平稳的放电平台,0.2C充放电时,放电比容量达到152.5mAh/g。为了进一步评估该材料的循环性能,制造了以该材料为正极活性物质的2.2Ah标准软包装锂离子电池。电池经3000次充放电循环,其放电容量仍有1 919mAh,放电容量保持率为84.5%,结果表明材料的循环稳定性能优良。  相似文献   

19.
LiMn2O4薄膜的溶胶-凝胶法制备及其电化学性质   总被引:6,自引:2,他引:4  
以醋酸锂、醋酸锰、乙二醇甲醚和乙酰丙酮为原料,采用溶胶 凝胶法制备薄膜锂离子蓄电池正极材料尖晶石LiMn2O4薄膜。用X射线衍射、扫描电镜分析了薄膜的物相和表面形貌,用循环伏安法、充放电和交流阻抗技术研究了薄膜的电化学性能。结果表明该法制备的LiMn2O4薄膜均匀、无开裂,750℃退火5min得到的薄膜的首次放电容量为36μAh/(cm2·μm),经100次循环后每次循环的容量损失为0.037%,薄膜具有良好的电化学性能。  相似文献   

20.
用化学蚀刻法制备了微孔铝集流体,通过扫描电镜(SEM)、剥离强度测试、充放电测试和电化学阻抗谱(EIS)测试等方法研究了铝箔表面形貌及其作为正极集流体对锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2电化学性能的影响。结果表明:蚀刻后铝集流体表面为蜂窝状结构,孔径在5~20 mm,其作为正极集流体制备的样品剥离强度显著提高,0.2 C首次充放电比容量分别为198.70和176.80 mAh/g,首次充放电效率为88.98%。8.0 C循环5次后的放电比容量为134.04m Ah/g,容量保持率仍有75.81%,1.0 C循环50次后放电比容量为161.15 mAh/g,容量保持率为95.62%,倍率和循环性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号