首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 136 毫秒
1.
煤基活性炭制备工艺及表面性质的研究进展   总被引:9,自引:0,他引:9  
煤是制备活性炭或活性炭复合物的重要原料。综述了活化条件和原料组成对煤基活炭的孔结构和表面性质的影响,并对煤基活性炭的研究发展方向进行了展望。  相似文献   

2.
介绍了活性炭新产品开发的现状,分析了我国煤基活性炭的发展趋势。并从影响活性炭性能的两个因素出发(孔结构、表面基团),阐述定向制备煤基活性炭的原理。根据用途和应用领域对吸附剂性能的要求来对活性炭的孔结构和表面性质进行调控,即定向制备活性炭。  相似文献   

3.
煤基活性炭的定向制备与再生研究   总被引:1,自引:0,他引:1  
对煤基活性炭生产过程中炭化与活化的机理展开了详细的分析和论述,同时分析了制备过程中影响质量的因素,并且具体分析了活性炭电极材料的定向制备.以我国的经济和环保为出发点,介绍了活性炭再生以及评价方法,为煤基活性炭的快速发展提供参考.  相似文献   

4.
为提高活性炭的回收性能,以褐煤为原料,Fe3O4为赋磁剂,采用一步法制备了中孔煤基磁性活性炭,并通过低温氮气吸附、X射线衍射光谱(XRD)和振动样品磁强计(VSM)对磁性活性炭的比表面积、孔隙结构、赋磁剂晶型、磁性能进行表征,研究了炭化和活化条件对磁性活性炭性能的影响。结果表明,Fe3O4不仅能催化炭烧蚀,而且能赋予活性炭磁性,最终以生成的Fe O、γ-Fe2O3和未反应的Fe3O4形式分散在磁性活性炭内。在Fe3O4添加量6%,炭化温度650℃,炭化60 min,活化温度930℃,活化时间120 min,水蒸气流量0.77 g/(g·h)的优化工艺条件下,煤基磁性中孔活性炭的比表面积达到370 m2/g,中孔率达到55.7%,比饱和磁化强度1.36 emu/g,剩磁0.46 emu/g,矫顽力643.17Oe,比磁化率7.19×10-6m3/kg。该煤基磁性活性炭属弱磁性矿物类,可采用强磁选机进行磁选回收。  相似文献   

5.
制备高比表面积煤基活性炭的理论基础   总被引:4,自引:0,他引:4  
解强  张双全 《炭素科技》2002,12(2):24-29
活性炭优异的吸附性能是以其内部所含的很大的孔容和巨大的内表面积为基础的。在活性炭内的各种孔隙中,以微孔对总比表面积值的贡献最大。微孔的实质是活性炭微晶结构中弯曲的和变形的芳环层或带之间的分子尺寸大小的间隙。高微孔容积活性炭的微晶结构是平面化组成成分进行无规则的、取向性低的排列,即难石墨化炭占主要构成。有机物热解形成炭素前驱体的低温炭化过程对炭素材料的微晶结构有决定性影响,炭素前驱体的结构决定了进一步加热处理时的高温型结构。对于原材料中尚无择优取向排列结构的有机物,经液相炭化,一般形成易石墨化的炭素前驱体;而若经固相炭化,则一般形成难石墨化的炭素前驱体。活性炭作为固相热破坏多孔性产物,其基本微晶结构同样在低温炭化过程中基本形成。以煤为原料,制取优质活性炭的根本途径在于:以无择优取向排列结构的煤作为生产活性炭的原料;控制炭化过程,使原料煤经固相炭化,生成各向同性、难石墨化的炭化物。  相似文献   

6.
以新疆水西沟煤为原料,采用水蒸气化学活化法制备活性炭,考察了不同炭化温度、炭化时间、活化温度、活化时间下制得的活性炭对亚甲基蓝值和碘值的影响,确定了煤基活性炭制备最适宜的工艺条件(炭化温度为500℃、炭化时间为2 h、活化温度为900℃、活化时间为2 h),探讨了煤基活性炭对冶炼废水中镍离子的吸附性能。结果表明制备的煤基活性炭对冶炼废水中镍离子具有很好的吸附效果,当p H为8、活性炭投加量为7 g/L、温度为50℃、吸附时间为30 min时,废水中镍离子的去除率可达到94.7%。  相似文献   

7.
NaOH活化法制备煤基活性炭的研究   总被引:2,自引:0,他引:2  
以焦作无烟煤为原料,NaOH为活化剂,采用化学活化法制备煤基活性炭,分别考察了碱炭比、活化温度和活化时间等工艺参数对活性炭吸附性能和收率的影响;利用低温N2吸附法对活性炭的比表面积、总孔容及孔径分布进行了表征.结果表明,在碱炭比为4,活化温度为750℃和活化时间为1 h的条件下,可以制得比表面积为2 483 m2/g,总孔容为1.41 cm3/g,碘吸附值为2 530 mg/g,亚甲蓝吸附值为418 mg/g的煤基活性炭.  相似文献   

8.
在有机溶剂中制备高选择性固定化脂肪酶是获得高对映体纯度的手性药物中间体的关键步骤.探讨了不同类型的活性炭作为固定化酶载体,应用于拆分手性1-苯乙醇反应,用N2吸附法和扫描电镜表征了活性炭载体.以固定化酶催化拆分(R,S)-1-苯乙醇为典型反应,研究了用不同活性炭为载体制备的催化剂的催化活性以及反应效果随反应时间的变化规律.结果表明,以微孔活性炭作载体制备的固定化酶催化活性最好,当反应时间达到12.8h时,转化率达到最大理论转化率50%.  相似文献   

9.
木质素对煤基活性炭影响分析   总被引:1,自引:1,他引:0  
以木质素与煤粉混合物为原料,KOH为活化剂,在活化温度为800℃,升温速度为5℃/min~10℃/min,活化剂与原料比为1∶1~2∶1,木质素占原料质量比为50%~70%时,制备出了性能优良的活性炭样品,通过对该活性炭性能的研究及使用热分析等研究手段,分析了木质素改善煤基活性炭的原因,为木质素再生资源的合理利用和煤基活性炭性能的提高寻找到一条途径.  相似文献   

10.
杨芳  刘晨  杨绍斌  董伟 《硅酸盐学报》2019,47(10):1499-1508
活性炭电极材料广泛的应用于超级电容器中,制备活性炭的前驱体种类繁多,其中煤炭是优质的活性炭前驱体,它的含碳量高、储量丰富且价格低廉。以煤为前驱体制备活性炭可以拓宽煤的应用领域,提高煤炭附加值。综述了最新煤基活性炭电极材料的研究进展,分析了煤基活性炭性质对超级电容器电性能的影响,最后对煤基活性炭未来的研究方向以及发展前景提出了展望。  相似文献   

11.
煤质活性炭脱灰工艺的研究进展   总被引:4,自引:0,他引:4  
张军  解强  李兰亭 《煤化工》2007,35(2):20-23
分析了煤质活性炭灰分的来源、赋存形式及煤质活性炭的灰分对活性炭性能的影响;并对煤质活性炭的前期、中期、后期3种不同的脱灰工艺进行了综述,分析了3种工艺实际应用中的优缺点。  相似文献   

12.
杨森  杨绍斌  李阳  董伟  万世鹏 《硅酸盐通报》2018,37(4):1213-1220
为制备煤基活性炭超级电容器,选褐煤、焦煤、无烟煤三种典型煤种为原料,以盐(KCl)、碱(KHCO3)、酸(H3PO4)为活化剂,探索煤种和活化剂的优化组合.通过电性能测试结果表明:KHCO3制备活性炭超级电容器性能最好;在KHCO3作为活化剂,褐煤、焦煤、无烟煤作原料条件下,褐煤制备的活性炭超级电容器性能最优,随活化温度的升高其比表面积先增大后减小,550 ℃时活性炭制备超级电容器性能最佳,比表面积最高达360 m2/g,比电容量和充放电效率最高分别为73 F/g和62.3%,经过10次循环后,容量保持率最高为70%.  相似文献   

13.
煤质活性炭的生产及发展   总被引:6,自引:0,他引:6  
吴旭洲  贺守印 《煤化工》2004,32(2):37-39
主要介绍了用原料煤生产活性炭的工艺流程及工艺条件的选择,并指出我国的活性炭生产正向大规模、高技术、多品种和高档次方向发展。  相似文献   

14.
利用选煤厂煤泥制备颗粒活性炭的研究   总被引:5,自引:0,他引:5  
以选煤厂煤泥为基础原料 ,用煤焦油、沥青作为粘结剂 ,研制出质量较好的颗粒活性炭 ,强度达 91 %,吸碘值为 955mg/g,比表面积为 96 0 m2 /g  相似文献   

15.
以糠醛渣活性炭、酚醛树脂、羧甲基纤维素和粘土为原料,按一定比例混合均匀后,挤压成型,经过炭化活化处理后,制得蜂窝状活性炭(HAC-C)。以产品得率、平均脱硫率和累积脱硫量为评价指标,研究了蜂窝状活性炭的制备工艺条件。得出炭化温度550℃、炭化时间60min、活化温度880℃、活化时间60min、CO2流量150mL/min为最优制备条件。  相似文献   

16.
活性炭具有吸附-脱附速率快、可再生等特点,是人们关注的热点.综述了目前活性炭的制备和再生方法,分析了它们的优缺点.指出随着人们环保意识的加强、对低能耗技术要求的提高,微波技术因其节能、省时、环保,在活性炭的制备和再生方面均具有广阔的应用前景.  相似文献   

17.
国内外活性炭制备发展动态   总被引:15,自引:0,他引:15  
对近年来国内外活性炭制造所采用的方法和原料进行了综述和比较.  相似文献   

18.
文章研究了以烟煤为主要原料,太西煤为配煤,乙烯-醋酸乙烯共聚体热熔胶和煤沥青作黏结剂制备煤质压块活性炭的制备工艺,探讨了烟煤的预氧化处理对活性炭性能的影响。实验结果表明:烟煤预氧化处理,以及加入适当太西煤和黏结剂,有利于提高活性炭的强度,改善压块活性炭的吸附性能;并在工艺试验研究工作的基础上,制备出中微孔结构发达、性能稳定的煤质压块活性炭。  相似文献   

19.
以芒果核为原料,氢氧化钾溶液为活化剂制备芒果核基活性炭。结果表明,芒果核基活性炭的最佳制备工艺条件为:活化剂氢氧化钾溶液浓度2 mol/L,活化时间80 min、活化温度600℃、碳化温度350℃,在此工艺条件下制备的芒果核活性炭的碘吸附值和亚甲基蓝吸附值分别为1 489.26和193.71 mg/g。芒果核活性炭吸附剂对重金属Cd~(2+)和Cu~(2+)具有一定的吸附能力,其饱和吸附量分别为26.15和38.25 mg/g。采用扫描电镜对产品的表面形态进行分析,发现其具有丰富的不规则孔隙结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号