首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In order to reveal the optimum Co loading, the selective catalytic reduction of NO with C3H6 over Co/Al2O3 catalyst was studied in a systematic fashion by varying the amount of cobalt oxide. It was found that upon loading a small amount of cobalt oxide (namely 0.5 wt% on a Co metal basis), the combination between Co(II) acetate salt and a high-purity alumina provided an active catalyst in the presence of excess oxygen and water. TPR measurement showed the presence of Co species other than CoAl2O4 spinel in the most excellent performance catalyst, from which the active sites should be produced.  相似文献   

2.
Methane oxidative coupling (MOC) was studied over Na2WO4/SiO2. The effect of Na2WO4 loading and reaction conditions on the catalytic behaviour was investigated. XRD, SEM, LRS and XPS have been used to study the catalyst morphology, Na2WO4 dispersity and surface oxygen species. These results were correlated with the catalytic activity and selectivity.  相似文献   

3.
Na2WO4/Co–Mn/SiO2 catalyst was prepared and used for the simultaneous production of ethylene and syngas from CH4. A CH4 conversion of 38% and a yield of 21% for (C2H4 + CO), with a C2H4/CO/H2 ratio of 1/0.7/0.7 were obtained under the optimized conditions.  相似文献   

4.
The effects of CO2 and H2O on the NO x storage and reduction characteristics of a Pt/Ba/Al2O3 catalyst were investigated. The presence of CO2 and H2O, individually or together, affect the performance and therefore the chemistry that occurs at the catalyst surface. The effects of CO2 were observed in both the trapping and reduction phases of the experiments, whereas the effect of H2O seems limited to the trapping phase. The data also indicate that multiple types of sorption sites (or mechanisms for sorption) exist on the catalyst. One mechanism is characterized by a rapid and complete uptake of NO x . A second mechanism is characterized by a slower rate of NO x uptake, but this mechanism is active for a longer time period. As the temperature is increased, the effect of H2O decreases compared to that of CO2. At the highest temperatures examined, the elimination of H2O when CO2 is present did not affect the performance.  相似文献   

5.
A series of transition metal oxides promoted titania catalysts (MO x /TiO2; M = Cr, Mn, Fe, Ni, Cu) were prepared by wet impregnation method using dilute solutions of metal nitrate precursors. The catalytic activity of these materials was evaluated for the selective catalytic reduction (SCR) of NO with CO as reductant in the presence of excess oxygen (2 vol.%). Among various promoted oxides, the MnO x /TiO2 system showed very promising catalytic activity for NO + CO reaction, giving higher than 90% NO conversion over a wide temperature window and at high space velocity (GHSV) of 50,000 h−1. It is remarkable to note that the catalytic activity increased with oxygen, up to 4 vol.%, under these conditions leading primarily to nitrogen. Our TPR studies revealed the presence of mixed oxidation states of manganese on the catalyst surface. Characterization results indicated that the surface manganese oxide phase and the redox properties of the catalyst play an important role in final catalytic activity.  相似文献   

6.
The reforming of methane with carbon dioxide over rhodium dispersed on silica, Rh/SiO2, and vanadia-promoted silica, Rh/VOx/SiO2, was studied by kinetic test reactions under differential conditions in a temperature range from 723 to 773 K. Transmission infrared spectroscopy was applied to observe the interaction of CO2 with the catalysts and the formation of surface intermediates during the CO2–CH4 reforming reaction. To analyze carbon deposition XP spectroscopy and TPO was carried out. It has been shown that the promotion of Rh/SiO2 catalysts with vanadium oxide enhances the catalytic activity for CO2 reforming of methane and decreases the deactivation by carbon deposition. This is attributed to the formation of a partial VOx overlayer on the Rh surface, which reduces the size of accessible ensembles of Rh atoms required for coke formation and creates new sites at the Rh–VOx interfacial region that are considered to be active sites for the activation/dissociation of carbon dioxide. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Wögerbauer  C.  Maciejewski  M.  Baiker  A.  Göbel  U. 《Topics in Catalysis》2001,16(1-4):181-186
Three different Ir catalysts supported on H-ZSM-5 were prepared and tested for the selective catalytic reduction of NO under net oxidizing conditions using propene as reducing agent. The preparation of highly active Ir catalysts and the elaboration of a procedure for enhancing activity by on stream conditioning was targeted. Structural changes of the catalyst during conditioning were investigated by means of XRD, TEM and activity measurements. Under reaction conditions Ir was present as Ir0 and IrO2. The presence of Ir0 was essential for high DeNOx activity. The ratio of Ir0/Ir4+ was found to depend on the size of Ir-containing crystallites. Larger crystallites contained predominantly Ir0. Crystallite size and oxidation state of Ir have been identified to be crucial for the NO reduction behaviour of Ir/H-ZSM-5.  相似文献   

8.
The effect of Pt addition to a V2O5/ZrO2 catalyst on the reduction of NO by C3H6 has been studied by FTIR spectroscopy as well as by analysis of the reaction products. Pt loading promoted the catalytic activity remarkably. FTIR spectra of NO adsorbed on the catalysts doped with Pt show the presence of two different types of Pt sites, Pt oxide and Pt cluster, on the surface. The amount of these sites depends on Pt contents and the catalyst state. Pt atoms highly disperse on the surface as Pt oxide at low Pt content, being aggregated into Pt metal clusters by increasing Pt amount or reducing the catalysts. The spectral behavior of V=O bands on the surface also supports the formation of Pt clusters. It is concluded that Pt promotes the NO–C3H6 reaction through a reduction–oxidation cycle between its oxide and cluster form.  相似文献   

9.
The hydrogenation of CO over a RhVO4/SiO2 catalyst has been investigated after H2 reduction at 773 K. A strong metal–oxide interaction (SMOI) induced by the decomposition of RhVO4 in H2 enhanced not only the selectivity to C2 oxygenates but also the CO conversion drastically, compared with an unpromoted Rh/SiO2 catalyst. The selectivity of the RhVO4/SiO2 catalyst was similar to those of conventional V2O5‐promoted Rh/SiO2 catalysts (V2O5–Rh/SiO2), but the CO dissociation activity (and TOF) was much higher than for V2O5–Rh/SiO2, and hence the yield of C2 oxygenates was increased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A new route of methane utilization is presented, in which methane is converted to H2, CO and C2H4 simultaneously with equal mole ratio, in order that the produced mixture could be used in the synthesis of propanal via hydroformylation. Kinetically controlled free radical gas phase methane oxidation was combined with its catalytic oxidative coupling over Mn/Na2WO4/SiO2 to concomitantly acquire ethylene and syngas with close concentration. Under the optimal reaction condition, a mole ratio of CO:H2:C2H4=1.0:1:0.9 was obtained with a yield of 11.6% and a selectivity of 68% to the target products based on C, while the selectivity to CO2 is as low as 18.1%.  相似文献   

11.
Mo2C prepared on SiO2 was found to be an effective catalyst for the dehydrogenation of ethane to produce ethylene in the presence of CO2. The selectivity to ethylene at 850–923 K was 90–95% at an ethane conversion of 8–30%. With the increase of the temperature the dry reforming of ethane became also a significant process. It is assumed that the Mo oxycarbide formed in the reaction between CO2 and Mo2C plays an important role in the activation of ethane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In this study, the photocatalysis of hybrid WO3/TiO2 films with different loadings of WO3 were investigated with and without potential bias. It was clearly indicated that hybrid WO3/TiO2 films show less photo-reactivity under only UV-irradiation, while more effective photocatalysis under potential bias than either TiO2 or WO3 by themselves, their photocatalytic performance depending on the loadings of WO3. In particular, a hybrid WO3/TiO2 film involving an amorphous-like WO3 phase plays a significant role in an enhancement of the electrochemically assisted photocatalysis.  相似文献   

13.
Tungstated TiO2 (WTi), tungstated Fe2O3 (WFe), tungstated SnO2 (WSn), sulfated TiO2 (STi), sulfated Fe2O3 (SFe), and sulfated SnO2 (SSn) are used as the support for the In and Pd catalysts for the SCR of NO with methane. It was found that the In/STi catalyst with a 2% indium loading showed the highest NOx conversion (39% at 450 °C and 12,000 h−1) among all of the catalysts studied. The acid strength of the STi support was very important for the formation of the InO+ site, which was thought to be the active site for NO reduction. The activity of the In/STi catalyst can be improved by increasing the surface area of the STi support. The most attractive feature of the In/STi catalyst is its high resistance for SO2.  相似文献   

14.
The catalytic decomposition of CFC-12 (CCl2F2) in the presence of water vapor was investigated over a series of solid acids WO3/ZrO2. Compared with tungstic acid, ammonium metatungstate is a better source of tungsten oxide for the preparation of WO3/ZrO2 catalysts. CFC-12 decomposition activities of WO3/ZrO2 catalysts are in good agreement with their acidities. Enhancing the acidities of catalysts is favorable to increase their CFC-12 decomposition activities. WO3/ZrO2 catalysts calcined at higher temperature exhibit good catalytic activity and stability for the hydrolysis of CFC-12, and show better structural stability during the reaction.  相似文献   

15.
FT-IR spectra of the co-adsorption of benzene and CO have been performed to identify the preferred adsorption sites of hydrogen and benzene on a Pt/SiO2 catalyst for hydrogenation of benzene. Results of CO adsorbed on atop sites on Pt/SiO2 includes: an α peak at 2091 cm−1, a β peak at 2080 cm−1 and a γ peak at 2067 cm−1 indicating three kinds of adsorption sites for dissociative hydrogen on Pt/SiO2. The site of lowest CO stretching frequency offers stronger adsorbates–metal interaction for benzene and hydrogen. Hydrogen binding on the site of lowest CO stretching frequency before benzene adsorption significantly enhances the reaction rate of benzene hydrogenation.  相似文献   

16.
In this work, we have carried out ivestigations on photo-electrochemical energy conversion and storage on WO3/TiO2 hybrid materials. The band gap excitation of the hybrid WO3/TiO2 having an amorphous WO3 phase led to an effective photo-charging to form a tungsten bronze structure by the intercalation of protons while a reversible discharging through de-intercalation could also be observed.  相似文献   

17.
In H2 TPD from Ru/SiO2, two desorption peaks were observed. Both exchanged H for D in sequential dosing experiments. These hydrogen adsorption states were also found for Ru-Cu/SiO2, along with another, higher temperature state at 400–500 K. This last state was neither exchangeable with nor replaceable by deuterium subsequently dosed at 150 K. The three chemisorption states are attributed to hydrogen held at the interface between Ru and SiO2 (< 300 K), adsorbed on Ru particles (310–380 K), and held at the Ru-Cu interface (> 400 K).  相似文献   

18.
Effect of chlorine on Ir/CeO2 catalyst behavior for preferential CO oxidation is investigated by high-resolution transmission electron microscopy, X-ray photoemission spectroscopy, and diffuse reflectance infrared spectroscopy. The presence of chlorine favors the dispersion of Ir particles. On ceria support, the replacement of the lattice oxygen by chloride ions would produce CeOCl species, which could hinder the formation of hydroxyl groups and carbonate and/or carboxylate species on the ceria surface. These features could explain the decreased activity of the Cl-containing Ir/CeO2 sample.  相似文献   

19.
Nitromethane (NM) is a very efficient reductant for converting NO2 to N2 over Ag/Y: Between 140 °C and 400 °C, the N2 yield is close to 100%. This high N2 yield results from the ability of Ag/Y to effectively catalyze the reaction between NM and NO2. This high catalytic activity of Ag/Y is minimally affected by surface bound CN, NC, or acetate, all of which are stable at temperatures below ∼300 °C. At T ≥ 400 °C, there is a reaction path that yields N2 from NM even in the absence of NO2. However even at 400 °C, under typical deNO x conditions, most N2 molecules are formed as a result of the reaction of NM and NO2.  相似文献   

20.
Pretreatment conditions for the activation of Ir/WO3–SiO2 for the selective catalytic reduction of NO by CO in the presence of excess O2 were studied. Sequential treatment involving calcination in the presence of O2 and H2O followed by reduction and then re-oxidation under mild conditions was found to effectively activate Ir/WO3–SiO2. Temperature-programmed desorption during calcination, X-ray diffraction, and temperature-programmed reduction by H2 revealed that calcination was necessary for oxidative removal of the NH3 ligands from the iridium precursor, that reduction produced metallic iridium and partially reduced tungsten oxide, and that re-oxidation produced tungsten oxide with low reducibility. Transmission electron microscopy revealed that Ir was supported on finely dispersed tungsten oxide and that the iridium particle size after the sequential activation was 1–1.5 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号