首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对固化温度为60℃的环氧树脂灌封材料在-30~60℃环境温度下的力学和物性参数以及固化残余应变进行测试,并以此为输入条件,采用有限元模型对环氧树脂灌封结构的热应变进行模拟,并与试验结果进行对比,研究了环氧树脂灌封结构的热力耦合特性.结果表明:该环氧树脂灌封结构的仿真热应变和试验热应变的相对误差均在工程允许范围内,有限元...  相似文献   

2.
RTM技术在波纹板制造中的应用探讨   总被引:3,自引:0,他引:3  
通过DSC、TMA等测试手段研究了5218和5640两种环氧树脂体系的粘度、固化和热机械特性等。实验结果表明5640环氧树脂体系不但满足RTM工艺对树脂基体工艺性的要求,而且其机械性能和耐热性也可以满足制件的使用要求,同时按照实验确定的注胶温度,注射压力等工艺参数利用RTM技术制造了波纹板。  相似文献   

3.
Hybrid moulds are a novel approach for rapid tooling of injection moulds that combines conventional machining for the mould structure and rapid prototyping techniques for the moulding blocks (core and cavity). In this study, two routes were used for producing the moulding blocks: selective laser sintering of stainless steel-based powder (hard tool) and epoxy resin vacuum casting (soft tool). The experimental work was based on a complex tridimensional commercial part. The mouldings were made in polypropylene, and the processing performance was monitored online in terms of pressure and temperature at the impression. The performance of the moulding blocks was analysed in terms of thermal and cycle performance and structural integrity. The epoxy tooling route is more adequate for fine detailing than selective laser sintering but is not adequate for parts with extensive ribs or deep bosses. The structural integrity of the less costly epoxy composite can be compromised during ejection, this suggesting the need to evaluate the stress field by simulation at the design stage of the mould.  相似文献   

4.
《Wear》2006,260(1-2):30-39
Epoxy resin composites are frequently applied in moulds manufactured with rapid tooling technologies that are used for wax and polymer materials injection. With the propose of enlarging the application field of the polymer matrix systems, it is fundamental to select adequate dispersed phases and analyse their influence on the composite properties in order to reinforce the polymer matrix and tailor the properties according to the tools specifications.Thermal conductivity and wear resistance are critical parameters for a good service performance and durability of the mould. Metallic fillers allow significant improvement in the resin thermal conductivity. In this work, it was possible to show that small amounts of milled fibres enhance the wear resistance, with little changes in the processability and in the allowed aluminium concentration in the resin matrix.A tribological study of these materials was performed involving the neat resin, the aluminium filled resin and tri-phase composites composed by epoxy, aluminium particles and milled glass or carbon fibres. The study was focused on the role of the particles and fibres in the friction and wear at room temperature and at a typical plastic injection temperature of 160 °C.  相似文献   

5.
激光分布对抽运Nd:YVO4晶体热效应的影响   总被引:3,自引:0,他引:3  
以解析各向异性分析理论为基础,研究矩形横截面Nd:YVO4激光晶体受到超高斯分布LD端面抽运时,激光晶体温度场分布和晶体抽运面热形变分布。通过激光晶体工作特点分析,考虑了激光分布和激光光束半径变化,建立了符合激光晶体工作状态的热模型。利用各向异性介质热传导方程的一种新求解方法,得出了矩形截面Nd:YVO4晶体的温度场、端面热形变场的通解表达式。研究结果表明:当使用输出功率为15W半导体激光器(超高斯阶次为1)端面中心入射Nd:YVO4晶体(晶体掺钕离子质量分数为0.5%)时,在抽运端面中心获得243.8C最高温升和1.99m最大热形变量,与实验结果一致。这种方法可以应用到其它激光晶体热问题研究中,为有效解决激光系统热问题提供了理论依据。  相似文献   

6.
The LLNL Crystal Driven Neutron Source is operational and has produced record ion currents of approximately 10 nA and neutron output of 1.9(+/-0.3)x10(5) per thermal cycle using a crystal heating rate of 0.2 degrees C/s from 10 to 110 degrees C. A 3 cm diameter by 1 cm thick LiTaO(3) crystal with a socket secured field emitter tip is thermally cycled with feedback control for ionization and acceleration of deuterons onto a deuterated target to produce D-D fusion neutrons. The entire crystal and temperature system is mounted on a bellows which allows movement of the crystal along the beam axis and is completely contained on a single small vacuum flange. The modular crystal assembly permitted experimental flexibility. Operationally, flashover breakdowns along the side of the crystal and poor emitter tip characteristics can limit the neutron source. The experimental neutron results extend earlier published work by increasing the ion current and pulse length significantly to achieve a factor-of-two higher neutron output per thermal cycle. These findings are reviewed along with details of the instrument.  相似文献   

7.
We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ≤ T ≤ 300 K and hydrostatic pressure P ≤ 250 MPa. Helium ((4)He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ? 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu(3)(CO(3))(2)(OH)(2), a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.  相似文献   

8.
聂建萍 《光学精密工程》2009,17(12):2931-2938
了解决LD端面泵浦热传导各向异性激光介质产生的热效应问题,建立了端面绝热、侧面冷却的Nd:YVO4晶体热模型。考虑到Nd:YVO4为热传导各向异性材料,而光纤耦合LD输出光束有着超高斯分布的特点,利用特征函数法和常数变异法得到了超高斯光束端面泵浦热传导各向异性激光介质温度场的一般解析表达式。并定量分析了超高斯泵浦光阶次、泵浦功率以及光斑尺寸对于Nd:YVO4晶体温度场的影响。新的各向异性介质热传导方程求解方法具有计算量小、精度高等特点。研究结果表明:若LD输出功率为30W,光学聚焦耦合器的传输效率为82%时,4阶超高斯光束端面泵浦掺钕离子质量分数为0.5%的Nd:YVO4晶体,泵浦面获得528.95C的最大温升。所得结果可用于LD端面泵浦热传导各向异性激光介质全固态激光器热稳腔的设计之中,对于提高激光器性能具有了理论指导作用。  相似文献   

9.
为提高微电子封装材料的散热性能并保留其良好的电绝缘性能,以环氧树脂为基体,二氧化硅包裹纳米铜粒子(SiO2-Cu)为填料,采用机械混炼法制备了芯片封装用SiO2-Cu环氧树脂复合材料。采用SEM和TEM研究了SiO2-Cu纳米粒子在环氧树脂中的分散情况;研究了填料对复合材料导热系数、热膨胀系数(CTE)和力学性能的影响。结果表明:SiO2-Cu纳米粒子在环氧树脂中分散性良好;复合材料的导热系数随SiO2-Cu纳米粒子填充量的增加而增大,填充量(体积分数)超过25%时导热系数开始下降,SiO2-Cu纳米粒子适宜用量为总体积的25%;随着填料的增加,复合材料的CTE减小;当SiO2-Cu纳米粒子填充量为25%时,用于芯片封装材料时具有良好的抗冲击性能和较长的电迁移失效时间。  相似文献   

10.
An apparatus to obtain low-temperature thermodynamic information under high pressures for a tiny single crystal of molecular compounds was developed based on the ac technique. To detect small temperature oscillation of a sample inside the cramp-type pressure cell, we have used a small ruthenium oxide chip sensor as a thermometer. The adoption of the four-terminal method by the ac resistance bridge has made high-resolution detection of thermal anomaly possible in the low-temperature region. The constructed high-pressure thermodynamic system was mounted on a 3He refrigerator and we have succeeded to detect the thermal anomaly in relevant to magnetic order of single crystal sample of Mn4-cluster complex up to 1.05 GPa. A distinct peak of the heat capacity and its upward shift with increasing pressures was observed using a tiny crystal of about 100 microg. The high-pressure behavior of the discontinuity of heat capacity at the superconductive transition of 6 mg of metal indium has also been detected by this apparatus. The details and performance of the technique are reported.  相似文献   

11.
Pressure dependence of mass burning of diluted hydrogen premixed flames is studied numerically over a full range of pressure. Mass burning rate is selected to be a parameter for burning capability of flames. First, positive linear dependence of mass burning rate has been confirmed at low pressures and negative pressure dependence has appeared in the medium range of pressure, which complies with the results reported in previous experimental works. And then, when the pressure range is extended more, positive pressure dependence is recovered or shows up again at high pressures. The flame structures of temperature and species profiles in each pressure regime are demonstrated. They show that the latter two dependences of negative and positive can be explained by enhanced recombination reactions producing HO2 at high pressures and chain re-branching to OH production via H2O2, respectively. There are three distinct dependences of mass burning or global chemistry in hydrogen flames. Two onset pressures, at which pressure dependence changes, depend on equivalence ratio, degree of dilution, diluent species, and unburned-gas temperature. Accordingly, the onset pressure can be used as a parameter characterizing burning of premixed flames.  相似文献   

12.
端面泵浦热传导各向异性激光棒的温度场   总被引:2,自引:0,他引:2  
为了解决LD端面泵浦热传导各向异性激光介质产生的热效应问题,建立了端面绝热、侧面冷却的Nd:YVO_4晶体热模型.考虑到Nd:YVO_4为热传导各向异性材料,而光纤耦合LD输出光束有超高斯分布的特点,利用特征函数法和常数变异法得到了超高斯光束端面泵浦热传导各向异性激光介质温度场的一般解析表达式,并定量分析了超高斯泵浦光阶次、泵浦功率以及光斑尺寸对Nd:YVO_4晶体温度场的影响.研究结果表明,若LD输出功率为50 W,光学聚焦耦合器的传输效率为82%,用四阶超高斯光束端面泵浦掺钕离子质量分数为0.5%的Nd:YVO_4晶体时,泵浦面可获得528.95 ℃的最大温升.所得结果可用于LD端面泵浦热传导各向异性激光介质全固态激光器热稳腔的设计,对于提高激光器性能具有理论指导作用.  相似文献   

13.
The aim of this paper is to study the effects of pressure and temperature dependence of a conventional lubricant's thermal properties on the behaviour of heavily loaded thermal elastohydrodynamic lubrication (TEHL) contacts. For this purpose, a typical mineral oil (Shell T9) is selected and the dependence of its transport properties on pressure and temperature is investigated. Appropriate models are then developed for these dependencies. The latter are included in a TEHL solver in order to investigate their effect on the behaviour of circular EHD contacts. The results reveal the necessity of a thermal analysis including the pressure and temperature dependence of thermal properties for a good estimation of film thicknesses and mostly traction coefficients in circular EHD contacts operating under severe conditions. Numerical results are compared with experiments, showing a very good agreement over the considered ranges. This thorough validation of a thermal EHL framework for the calculation of film thickness and friction offers a previously unavailable opportunity to investigate the effects of variations in material properties.  相似文献   

14.
采用裂解气相色谱/质谱法研究双酚A环氧树脂结构   总被引:2,自引:0,他引:2  
采用裂解气相色谱/质谱联用方法对不同品种和牌号的双酚A环氧树脂进行分析研究。选择550℃裂解,其裂解产物通过SE~54高效毛细管柱分离和质谱鉴定,提供了有关环氧树脂的特征结构信息。通过对总离子流图中裂解碎片峰峰面积比值的计算,可初步鉴定7种不同牌号的环氧树脂。此方法,具有样品无需前处理,作量少,对应性强,灵敏度高等特点。  相似文献   

15.
R. Ramesh  R.M.V.G.K. Rao 《Wear》1983,89(2):131-136
Continuous glass-fibre-reinforced epoxy composites were fabricated and their wear behaviour was studied. A rapid drop in the wear loss occurred with an increase in the sliding speed for the pure epoxy resin while the reinforced sample exhibited a mild decrease, a flat region and then a rise. Optical microscopy examination indicates that the higher wear loss for the composite at higher speeds could be due to loss of glass fibres. The variation in the coefficient of friction, μ, with load and sliding speed was studied. Both the epoxy resin and the composite show a marked dependence of μ on load, which includes a peak. The pure epoxy resin showed no significant dependence of the coefficient of friction on sliding speed whereas the composite shows a peak value, thereby emphasizing the important role of the reinforcing fibres.  相似文献   

16.
A new ultrahigh vacuum microcalorimeter for measuring heats of adsorption and adsorption-induced surface reactions on complex single crystal-based model surfaces is described. It has been specifically designed to study the interaction of gaseous molecules with well-defined model catalysts consisting of metal nanoparticles supported on single crystal surfaces or epitaxial thin oxide films grown on single crystals. The detection principle is based on the previously described measurement of the temperature rise upon adsorption of gaseous molecules by use of a pyroelectric polymer ribbon, which is brought into mechanical∕thermal contact with the back side of the thin single crystal. The instrument includes (i) a preparation chamber providing the required equipment to prepare supported model catalysts involving well-defined nanoparticles on clean single crystal surfaces and to characterize them using surface analysis techniques and in situ reflectivity measurements and (ii) the adsorption∕reaction chamber containing a molecular beam, a pyroelectric heat detector, and calibration tools for determining the absolute reactant fluxes and adsorption heats. The molecular beam is produced by a differentially pumped source based on a multichannel array capable of providing variable fluxes of both high and low vapor pressure gaseous molecules in the range of 0.005-1.5 × 10(15) molecules?cm(-2)?s(-1) and is modulated by means of the computer-controlled chopper with the shortest pulse length of 150 ms. The calorimetric measurements of adsorption and reaction heats can be performed in a broad temperature range from 100 to 300 K. A novel vibrational isolation method for the pyroelectric detector is introduced for the reduction of acoustic noise. The detector shows a pulse-to-pulse standard deviation ≤15 nJ when heat pulses in the range of 190-3600 nJ are applied to the sample surface with a chopped laser. Particularly for CO adsorption on Pt(111), the energy input of 15 nJ (or 120 nJ?cm(-2)) corresponds to the detection limit for adsorption of less than 1.5 × 10(12) CO molecules?cm(-2) or less than 0.1% of the monolayer coverage (with respect to the 1.5 × 10(15) surface Pt atoms?cm(-2)). The absolute accuracy in energy is within ~7%-9%. As a test of the new calorimeter, the adsorption heats of CO on Pt(111) at different temperatures were measured and compared to previously obtained calorimetric data at 300 K.  相似文献   

17.
叶永伟  杨超 《仪器仪表学报》2016,37(5):1087-1093
针对如今的市场对压力式温度仪表的精度和操作简洁性有了更高的要求,提出了一种毛细管补偿方法来解决环境温度变化对压力式温度仪表精度的影响。该补偿的原理是在测温系统中置入一个反向偏转机构,反向偏转机构连接一根新增的毛细管,当外部环境温度变化时引起毛细管中感温介质的压力变化,压力变化通过反向偏转机构带动指针的偏转来实现反向补偿。通过传动机构与弹簧管理论分析证明该补偿机构的有效性,并经实验对比了带补偿机构与无补偿机构测温仪表的测量误差,分析得出带补偿机构的温度仪表能使测温仪表的精度得到较大的提高。  相似文献   

18.
A fiber sensor for simultaneous measurement of temperature and strain based on a fiber Bragg grating (FBG) with the pigtail fiber covered with epoxy resin is presented. The side mode suppression ratio of the FBG will vary with the temperature due to the Fresnel reflection from the interface between the pigtail fiber and the epoxy resin whose refractive index is sensitive to the temperature. The sensor is also capable of simultaneous measurement temperature and strain by combining the Bragg wavelength shift characteristics as the temperature and strain of the FBG.  相似文献   

19.
Calorimetry offers a direct measurement of thermodynamic properties of materials, including information on the energetics of phase transitions. Many materials can only be prepared in thin film or small crystal (submilligram) form, negating the use of traditional bulk techniques. The use of micromachined, membrane-based calorimeters for submilligram bulk samples is detailed here. Numerical simulations of the heat flow for this use have been performed. These simulations describe the limits to which this calorimetric technique can be applied to the realm of small crystals (1-1000 microg). Experimental results confirm the feasibility of this application over a temperature range from 2 to 300 K. Limits on sample thermal conductivity as it relates to the application of the lumped and distributed tau 2 models are explored. For a typical sample size, the simulations yield 2.5% absolute accuracy for the heat capacity of a sample with thermal conductivity as low as 2 x 10(-5) W/cm K at 20 K, assuming a strong thermal link to the device. Silver paint is used to attach (both thermally and physically) the small samples; its heat capacity and reproducibility are discussed. Measurements taken of a submilligram single crystal of cobalt oxide (CoO) compare favorably to the results of a bulk calorimetric technique on a larger sample.  相似文献   

20.
In the present work, the influence of adhesive properties on the formability of adhesive-bonded sheets (deep drawing quality (DDQ) steel and SS 316L) has been studied through in-plane plane strain (IPPS) formability tests. The adhesive properties were modified by different hardener to resin ratios and by having epoxy and acrylic adhesives. The formability is quantified by load–extension behaviour, limit strains and strain hardening exponent of adhesive-bonded sheets. It is observed from the work done that with increase in hardener to resin ratio, the elongation of adhesives is found to improve during tensile tests. This forms the basis for the actual formability change of adhesive-bonded sheets at different hardener/resin (H/R) ratios. During IPPS formability tests of adhesive-bonded steel sheets, the total elongation is found to improve with increase in hardener/resin ratio. Likewise, limit strains also improve with increase in hardener/resin ratios. The improvement in elongation and limit strains is due to the conversion of a resin-rich formulation to a hardener-rich formulation, making the sample more ductile. Both the acrylic and epoxy adhesive-bonded sheets show an equal amount of improvement in limit strain. The strain hardening exponent (n) of adhesive-bonded blanks has improved with increase in hardener/resin ratio in all the three regions of deformation. The adhesive-bonded blanks have larger strain hardening exponent values as compared to double sheet in the corresponding regions of deformation, indicating formability improvement as compared to double sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号