首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conserved charge-pair networks in the mitochondrial carrier family   总被引:1,自引:0,他引:1  
Selection for regain-of-function mutations in the yeast ADP/ATP carrier AAC2 has revealed an unexpected series of charge-pairs. Four of the six amino acids involved are found in the mitochondrial energy transfer motifs used to define this family of proteins. As such, the results found with the ADP/ATP carrier may apply to the family as a whole. Mitochondrial carriers are built from three homologous domains, each with the conserved motif PX(D,E)XX(K,R). Neutralization of the conserved positive charges at K48, R152 or R252 in these motifs results in respiration defective yeast. Neutralization of the negative charges at D149 and D249 also make respiration defective yeast, though E45G or E45Q mutants are able to grow on glycerol. Regain of function occurs when a complementary charge is lost from another site in the molecule. This phenomenon has been observed independently eight times and thus is strong evidence for charge-pairs existing between the affected residues. Five different charge-pairs have been detected in the yeast AAC2 by this method and three more can be predicted based on homology between the domains. The highly conserved charge-pairs occurring within or between the three mitochondrial energy transfer signatures seem to be a critical feature of mitochondrial carrier structure, independent of the substrates transported. Conformational switching between alternative charge-pairs may constitute part of the basis for transport.  相似文献   

2.
The site-directed mutagenesis of a number of proposed active site residues of 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase is reported. Several of these mutations resulted in complete loss of enzyme activity indicating that these residues are probably involved with catalysis, notably K22R, K411R, D384A, R27A, R100A, and D242A. Of those, K22R, R27A, and D384A did not bind either the substrate shikimate-3-phosphate (S3P) or glyphosate (GLP). The K411R and D242A mutants bind S3P only in the presence of GLP. The kinetic characterization of mutants R100K, K340R, and E418A, which retain activity, is reported. Of those, R100K and K340R do not accumulate enzyme intermediate of enzyme-bound product under equilibrium conditions. These residues, while not essential for catalysis, are most likely important for substrate binding. All of the mutants are shown to be correctly folded by NMR spectroscopy.  相似文献   

3.
To determine the effect of mutations at the nucleotide-binding site of recombinant Hsp70 on its interaction with protein and peptide substrates, point mutations were made at D10 and K71, two residues at the active site. The D10S mutation weakened both ATP and ADP binding, while the K71E mutation weakened only ATP binding. In binding experiments using Hsp70 with no bound nucleotide, the mutated Hsp70s interacted with clathrin and peptide just like the wild-type Hsp70. However, the D10 mutation completely abolished the effects of both ATP and ADP on peptide and clathrin binding. The K71 mutation also abolished the effect of ATP on substrate binding, but ADP, which still bound tightly, had its normal effect on substrate binding. In addition, the D10S and K71E mutants had greatly reduced ability to uncoat clathrin-coated vesicles at pH 7.0, bind to clathrin baskets at pH 6.0, and undergo polymerization induced by YDJ1 in the presence of ATP. We conclude, first, that nucleotides must bind strongly to Hsp70 to affect substrate binding and, second, that interaction of Hsp70 with DnaJ homologues may also require a strongly bound ATP.  相似文献   

4.
The role of amino acid residues located in the active site pocket of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus[Heinz, D. W., Ryan, M., Bullock, T., & Griffith, O. H. (1995) EMBO J. 14, 3855-3863] was investigated by site-directed mutagenesis, kinetics, and crystal structure analysis. Twelve residues involved in catalysis and substrate binding (His32, Arg69, His82, Gly83, Lys115, Glu117, Arg163, Trp178, Asp180, Asp198, Tyr200, and Asp274) were individually replaced by 1-3 other amino acids, resulting in a total number of 21 mutants. Replacements in the mutants H32A, H32L, R69A, R69E, R69K, H82A, H82L, E117K, R163I, D198A, D198E, D198S, Y200S, and D274S caused essentially complete inactivation of the enzyme. The remaining mutants (G83S, K115E, R163K, W178Y, D180S, Y200F, and D274N) exhibited reduced activities up to 57% when compared with wild-type PI-PLC. Crystal structures determined at a resolution ranging from 2.0 to 2.7 A for six mutants (H32A, H32L, R163K, D198E, D274N, and D274S) showed that significant changes were confined to the site of the respective mutation without perturbation of the rest of the structure. Only in mutant D198E do the side chains of two neighboring arginine residues move across the inositol binding pocket toward the newly introduced glutamic acid. An analysis of these structure-function relationships provides new insight into the catalytic mechanism, and suggests a molecular explanation of some of the substrate stereospecificity and inhibitor binding data available for this enzyme.  相似文献   

5.
Aspartate residues are involved in coordination of the nucleotide-metal of several nucleotide triphosphatases. To examine interactions between Rubisco activase and ATP, site-directed mutations were made at two species-invariant aspartate residues, D174 and D231. In the absence of the magnesium cofactor, the mutant proteins D231R, D174Q, and D174A, but not D174E, bound ATP with higher affinity than did wild-type. In the presence of Mg2+, the affinity for ATP of D231R was further increased, but was reduced with mutations at D174. Although all mutants bound ATP, only D174E aggregated in response to ATP/Mg2+ and retained partial ATPase and Rubisco activation activities. In mixing experiments, the catalytically competent D174E stimulated wild-type ATPase activity, whereas the mutants lacking ATPase activity were inhibitory to wild-type enzyme and prevented aggregation. These results are consistent with a mechanism for activase that involves ATP-binding, subunit aggregation and ATP hydrolysis as sequential steps in the catalytic mechanism. The results also indicated that precise coordination of the gamma-phosphate is required for aggregation and depends on D174 and D231. To account for the pronounced cooperativity of Rubisco activase subunits, we suggest that coordination of the ATP gamma-phosphate may involve participation of residues from adjacent subunits.  相似文献   

6.
phi 29 DNA polymerase shares with other alpha-like DNA polymerases several regions of amino acid sequence similarity and sensitivity to inhibitors of eukaryotic DNA polymerase alpha. In this paper, site-directed mutants in the phi 29 DNA polymerase residues Asp249, Ser252, Leu253, and Pro255 of the conserved amino acid motif "Dx2SLYP" are described. Two mutants, D249E and S252R, were drastically affected in all the synthetic activities, whereas their 3' to 5' exonuclease activity and interaction with the TP primer was normal. Mutant D249E, slightly affected in template-primer binding, was completely inactive in all conditions tested, suggesting that Asp249 could be playing a direct role in catalysis. On the other hand, mutant S252R, strongly affected in template-primer binding, showed some DNA polymerization activity in the presence of Mn2+. Mutants S252G and P255S showed a reduced template-primer binding ability; these mutants, together with mutant L253V, showed metal ion-dependent phenotypes in their synthetic activities and altered sensitivities to the PPi analog phosphonoacetic acid. All these results support the hypothesis that the Dx2SLYP motif forms part of the polymerization active site of the phi 29 DNA polymerase, being the Asp249 residue critical both for protein-primed initiation and DNA polymerization.  相似文献   

7.
The stability properties of six natural mutants of the TEM-1 beta-lactamase have been studied. The glutamate to lysine substitution at positions 104 and 240 stabilize the enzyme. Conversely, the G238S mutant's decreased stability might reflect an altered conformation of the active site and thus be related to the modified substrate profile. The relative stability of the R164S and R164H mutants is explained by the formation of a hydrogen bond between these residues and Asp-179 conferring a somewhat different structure to the omega loop and thus also explaining the extended substrate profile of these mutants. The loss of stability of the R164H mutant with increasing pH values can be explained by the titration of a hydrogen bond between the N delta of His-164 and the O delta of Asp-179. The properties of the G238S + E104K double mutant which is the most active against third-generation cephalosporins result from a balance of destabilizing and stabilizing substitutions, and their effects seem to be additive. The behavior of the R164S + E240K mutant might be explained on the basis of a similar compensation phenomenon.  相似文献   

8.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthetic pathway of animals, fungi and some bacteria. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. In mouse erythroid 5-aminolevulinate synthase, lysine 313 has been identified as the residue involved in the Schiff base linkage with pyridoxal 5'-phosphate [Ferreira, G. C., et al. (1993) Protein Sci. 2, 1959-1965], while arginine 149, a conserved residue among all known 5-aminolevulinate synthase sequences, is essential for function [Gong & Ferreira (1995) Biochemistry 34, 1678-1685]. To determine whether each subunit contains an independent active site (i.e., intrasubunit arrangement) or whether the active site resides at the subunit interface (i.e., intersubunit arrangement), in vivo complementation studies were used to generate heterodimers from site-directed, catalytically inactive mouse 5-aminolevulinate synthase mutants. When R149A and K313A mutants were co-expressed in a hem A- Escherichia coli strain, which can only grow in the presence of 5-aminolevulinate or when it is transformed with an active 5-aminolevulinate synthase expression plasmid, the hem A- E. coli strain acquired heme prototrophy. The purified K313A/R149A heterodimer mixture exhibited K(m) values for the substrates similar to those of the wild-type enzyme and approximately 26% of the wild-type enzyme activity which is in agreement with the expected 25% value for the K313A/R149A coexpression system. In addition, DNA sequencing of four Saccharomyces cerevisiae 5-aminolevulinate synthase mutants, which lack ALAS activity but exhibit enzymatic complementation, revealed that mutant G101 with mutations N157Y and N162S can complement mutant G220 with mutation T452R, and mutant G205 with mutation C145R can complement mutant Ole3 with mutation G344C. Taken together, these results provide conclusive evidence that the 5-aminolevulinate synthase active site is located at the subunit interface and contains catalytically essential residues from the two subunits.  相似文献   

9.
Structural models of subunit epsilon of the ATP synthase from Escherichia coli have been determined recently by NMR [Wilkens et al. (1995) Nat. Struct. Biol. 2, 961-967] and by X-ray crystallography [Uhlin et al. (1997) Structure 5, 1219-1230], revealing a two-domain protein. In this study, six new epsilon mutants were constructed and analyzed: Y63A, D81A, T82A, and three truncated mutants, tr80(S), tr94(LAS), and tr117(AS). Seven mutants constructed previously were also analyzed: E31A, E59A, S65A, E70A, T77A, R58A, and D81A/R85A. Subunits were purified by isoelectric focusing from extracts of cells that overproduced these 13 mutants. F1 was prepared lacking subunit epsilon by immobilized-Ni affinity chromatography. Three mutants, E70A, S65A, and E31A, showed somewhat higher affinities and extents of inhibition than the wild type. Three mutants, T82A, R85A, and tr94(LAS), showed both lower affinities and extents of inhibition, over the concentration range tested. Two showed no inhibition, D81A and tr80(S). The others, T77A, Y63A, E59A, and tr117(AS), showed lower affinities than wild type, but the extents of inhibition were nearly normal. Results indicate that the C-terminal domain of subunit epsilon contributes to inhibition of ATP hydrolysis, but it is not necessary for ATP-driven proton translocation. Interactions with subunit gamma are likely to involve a surface containing residues S65, E70, T77, D81, and T82, while residues R85 and Y63 are likely to be important in the conformation of subunit epsilon.  相似文献   

10.
CD38 catalyzes not only the formation of cyclic ADP-ribose (cADPR) from NAD+ but also the hydrolysis of cADPR to ADP-ribose (ADPR), and ATP inhibits the hydrolysis (Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H., and Okamoto, H. (1993) J. Biol. Chem. 268, 26052-26054). In the present study, using purified recombinant CD38, we showed that the cADPR hydrolase activity of CD38 was inhibited by ATP in a competitive manner with cADPR. To identify the binding site for ATP and/or cADPR, we labeled the purified CD38 with FSBA. Sequence analysis of the lysylendopeptidase-digested fragment of the labeled CD38 indicated that the FSBA-labeled residue was Lys-129. We introduced site-directed mutations to change the Lys-129 of CD38 to Ala and to Arg. Neither mutant was labeled with FSBA nor catalyzed the hydrolysis of cADPR to ADPR. Furthermore, the mutants did not bind cADPR, whereas they still used NAD+ as a substrate to form cADPR and ADPR. These results indicate that Lys-129 of CD38 participates in cADPR binding and that ATP competes with cADPR for the binding site, resulting in the inhibition of the cADPR hydrolase activity of CD38.  相似文献   

11.
The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.  相似文献   

12.
The AAC3 gene of Saccharomyces cerevisiae encodes a mitochondrial ADP/ATP translocator which is subject to oxygen repression. Evidence is presented here, that the repression of AAC3 expression is dependent upon heme and the ROX1 factor. The promoter region of the AAC3 gene was isolated, sequenced, and deletion analysis was performed using lacZ as a reporter gene to determine the cis-acting regions responsible for the regulation of AAC3 expression. The results of the deletion analysis show that the negative control of the AAC3 gene by oxygen and ROX1 factor is mediated by an upstream repression sequence consisting of a T-rich segment adjacent to the consensus elements that are present in the 5' flanking regions of several other yeast genes. An additional upstream repressor site was located within the AAC3 promoter which, however, is not related either to oxygen or to ROX1 factor. The data presented here delineate the main cellular factors and DNA sequences involved in the regulatory mechanism by which an essential function for anaerobic cells growth, ADP/ATP translocation, is ensured. In addition, they show that the AAC3 gene belongs to the family of yeast genes including TIF51B, COX5b, HEM13 and CYC7 that are negatively regulated by oxygen and heme.  相似文献   

13.
The role of the highly conserved residues in the gamma-phosphate binding site of myosin upon myosin motor function was studied. Each of five residues (Ser181, Lys185, Asn235, Ser236, and Arg238) in smooth muscle myosin was mutated. K185Q has neither a steady state ATPase nor an initial Pi burst. Although ATP and actin bind to K185Q, it is not dissociated from actin by ATP. These results indicate that the hydrolysis of bound ATP by K185Q is inhibited. S236T has nearly normal basal Mg2+-ATPase activity, initial Pi burst, ATP-induced enhancement of intrinsic tryptophan fluorescence, and ATP-induced dissociation from actin. However, the actin activation of the Mg2+-ATPase activity and actin translocation of S236T were blocked. In contrast S236A has nearly normal enzymatic properties and actin-translocating activity. These results indicate that 1) the hydroxyl group of Ser236 is not critical as an intermediary of proton transfer during the ATP hydrolysis step, and 2) the bulk of the extra methyl group of the threonine residue in S236T blocks the acceleration of product release from the active site by actin. Arg238, which interacts with Glu459 at the Switch II region, was mutated to Lys and Ile, respectively. R238K has essentially normal enzymatic activity and motility. In contrast, R238I does not hydrolyze ATP or support motility, although it still binds ATP. These results indicate that the charge interaction between Glu459 and Arg238 is critical for ATP hydrolysis by myosin. Other mutants, S181A, S181T, and N235I, showed nearly normal enzymatic and motile activity.  相似文献   

14.
We have identified mutations in Raf-1 that increase binding to Ras. The mutations were identified making use of three mutant forms of Ras that have reduced Raf-1 binding (Winkler, D. G., Johnson, J. C., Cooper, J. A., and Vojtek, A. B. (1997) J. Biol. Chem. 272, 24402-24409). One mutation in Raf-1, N64L, suppresses the Ras mutant R41Q but not other Ras mutants, suggesting that this mutation structurally complements the Ras R41Q mutation. Missense substitutions of residues 143 and 144 in the Raf-1 cysteine-rich domain were isolated multiple times. These Raf-1 mutants, R143Q, R143W, and K144E, were general suppressors of three different Ras mutants and had increased interaction with non-mutant Ras. Each was slightly activated relative to wild-type Raf-1 in a transformation assay. In addition, two mutants, R143W and K144E, were active when tested for induction of germinal vesicle breakdown in Xenopus oocytes. Interestingly, all three cysteine-rich domain mutations reduced the ability of the Raf-1 N-terminal regulatory region to inhibit Xenopus oocyte germinal vesicle breakdown induced by the C-terminal catalytic region of Raf-1. We propose that a direct or indirect regulatory interaction between the N- and C-terminal regions of Raf-1 is reduced by the R143W, R143Q, and K144E mutations, thereby increasing access to the Ras-binding regions of Raf-1 and increasing Raf-1 activity.  相似文献   

15.
Vanadate trapping of nucleotide and site-directed mutagenesis were used to investigate the role of the two nucleotide-binding (NB) sites in the regulation of ATP hydrolysis by P-glycoprotein (mouse Mdr3). Mdr3, tagged with a hexahistidine tail, was overexpressed in the yeast Pichia pastoris and purified to about 90% homogeneity by Ni-affinity chromatography. This protocol yielded purified, reconstituted Mdr3 which exhibited high verapamil stimulation of ATPase activity with a Vmax of 4.2 micromol min-1 mg-1 and a KM of 0.7 mM, suggesting that Mdr3 purified from P. pastoris is highly functional. Point mutations were introduced into the core consensus sequence of the Walker A or B motifs in each of the two NB sites. The mutants K429R, K1072R (Walker A) and D551N, D1196N (Walker B) were functionally impaired and unable to confer cellular resistance to the fungicide FK506 in the yeast Saccharomyces cerevisiae. Single and double mutants (K429R/K1072R, D551N/D1196N) were expressed in P. pastoris, and the effect of these mutations on the ATPase activity of Mdr3 was characterized. Purified reconstituted Mdr3 mutants showed no detectable ATPase activity compared to proteoliposomes purified from negative controls (<5% of wild-type Mdr3). Vanadate readily induced trapping of 8-azido-nucleotide in the wild-type enzyme after a short 10 s incubation, and specific photolabeling of Mdr3 after UV irradiation. No such vanadate-induced trapping/photolabeling was observed in any of the mutants, even after a 60 min trapping period at 37 degrees C. Since vanadate trapping with 8-azido-ATP requires hydrolysis of the nucleotide, the data suggest that 8-azido-ATP hydrolysis is dramatically impaired in all of the mutant proteins (<0.3% activity). These results show that mutations in either NB site prevent single turnover and vanadate trapping of nucleotide in the nonmutant site. These results further suggest that the two NB sites cannot function independently as catalytic sites in the intact molecule. In addition, the N- or C-terminal NB sites appear functionally indistinguishable, and cooperative interactions absolutely required for ATP hydrolysis may originate from both sites.  相似文献   

16.
ATP-sensitive K+ (K(ATP)) channels are nucleotide-gated channels that couple the metabolic status of a cell with membrane excitability and regulate a number of cellular functions, including hormone secretion and cardioprotection. Although intracellular ATP is the endogenous inhibitor of K(ATP) channels and ADP serves as the channel activator, it is still a matter of debate whether changes in the intracellular concentrations of ATP, ADP, and/or in the ATP/ADP ratio could account for the transition from the ATP-liganded to the ADP-liganded channel state. Here, we overview evidence for the role of cellular phosphotransfer cascades in the regulation of K(ATP) channels. The microenvironment of the K(ATP) channel harbors several phosphotransfer enzymes, including adenylate, creatine, and pyruvate kinases, as well as other glycolytic enzymes that are able to transfer phosphoryls between ATP and ADP in the absence of major changes in cytosolic levels of adenine nucleotides. These phosphotransfer reactions are governed by the metabolic status of a cell, and their phosphotransfer rate closely correlates with K(ATP) channel activity. Adenylate kinase catalysis accelerates the transition from ATP to ADP, leading to K(ATP) channel opening, while phosphotransfers driven by creatine and pyruvate kinases promote ADP to ATP transition and channel closure. Thus, through delivery and removal of adenine nucleotides at the channel site, phosphotransfer reactions could regulate ATP/ADP balance in the immediate vicinity of the channel and thereby the probability of K(ATP) channel opening. In this way, phosphotransfer reactions could provide a transduction mechanism coupling cellular metabolic signals with K(ATP) channel-associated functions.  相似文献   

17.
Charged or polarized amino acid residues near or within the second transmembrane (M2) segment of neuronal ATP receptor/channels (P2X2 receptors) were neutralized by site-directed mutagenesis, and the properties of the mutants were electrophysiologically characterized using Xenopus oocytes. When Asp315 was substituted with Val (D315V), the sensitivity to ATP was reduced by about 60-fold. The sensitivity to ATP was not affected by the neutralization of Lys324, which is involved in a Walker type A ATP-binding sequence, Lys366, Tyr330, or Asn333. With D315V channels, the sensitivities to other agonists (ADP, ATP gamma S, and 2-methylthio ATP) were also reduced. The sensitivities to antagonists (suramin and Cibacron Blue F3GA) were, however, not affected by this neutralization. The results suggest that Asp315, which is assumed to be present in the extracellular region near the M2 segment of P2X2 receptor/channels, serves to maintain agonist sensitivity.  相似文献   

18.
ATP hydrolysis by bacterial and eukaryotic MutS activities is required for their function in mismatch correction, and two different models for the role of ATP in MutS function have been proposed. In the translocation model, based on study of bacterial MutS, ATP binding reduces affinity of the protein for a mismatch and activates secondary DNA binding sites that are subsequently used for movement of the protein along the helix contour in a reaction dependent on nucleotide hydrolysis (Allen, D. J., Makhov, A., Grilley, M., Taylor, J., Thresher, R., Modrich, P., and Griffith, J. D. (1997) EMBO J. 16, 4467-4476). The molecular switch model, based on study of human MutSalpha, invokes mismatch recognition by the MutSalpha.ADP complex. After recruitment of downstream repair activities to the MutSalpha.mismatch complex, ATP binding results in release of MutSalpha from the heteroduplex (Gradia, S., Acharya, S., and Fishel, R.(1997) Cell 91, 995-1005). To further clarify the function of ATP binding and hydrolysis in human MutSalpha action, we evaluated the effects of ATP, ADP, and nonhydrolyzable ATP analogs on the lifetime of protein.DNA complexes. All of these nucleotides were found to increase the rate of dissociation of MutSalpha from oligonucleotide heteroduplexes. These experiments also showed that ADP is not required for mismatch recognition by MutSalpha, but that the nucleotide alters the dynamics of formation and dissociation of specific complexes. Analysis of the mechanism of ATP-promoted dissociation of MutSalpha from a 200-base pair heteroduplex demonstrated that dissociation occurs at DNA ends in a reaction dependent on ATP hydrolysis, implying that release from this molecule involves movement of the protein along the helix contour as predicted for a translocation mechanism. In order to reconcile the relatively large rate of movement of MutS homologs along the helix with their modest rate of ATP hydrolysis, we propose a novel mechanism for protein translocation along DNA that supports directional movement over long distances with minimal energy input.  相似文献   

19.
Endonuclease V is a pyrimidine dimer-specific DNA glycosylase-apurinic (AP)1 lyase which, in vivo or at low salt concentrations in vitro, binds nontarget DNA through electrostatic interactions and remains associated with that DNA until all dimers have been recognized and incised. On the basis of the analyses of previous mutants that effect this processive nicking activity, and the recently published cocrystal structure of a catalytically deficient endonuclease V with pyrimidine dimer-containing DNA [Vassylyev, D. G., et al. (1995) Cell 83, 773-782], four site-directed mutations were created, the mutant enzymes expressed in repair-deficient Escherichia coli, and the enzymes purified to homogeneity. Steady-state kinetic analyses revealed that one of the mutants, Q15R, maintained an efficiency (k(cat)/Km) near that of the wild-type enzyme, while R117N and K86N had a 5-10-fold reduction in efficiency and K121N was reduced almost 100-fold. In addition, K121N and K86N exhibited a 3-5-fold increase in Km, respectively. All the mutants experienced mild to severe reduction in catalytic activity (k(cat)), with K121N being the most severely affected (35-fold reduction). Two of the mutants, K86N and K121N, showed dramatic effects in their ability to scan nontarget DNA and processively incise at pyrimidine dimers in UV-irradiated DNA. These enzymes (K86N and K121N) appeared to utilize a distributive, three-dimensional search mechanism even at low salt concentrations. Q15R and R117N displayed somewhat diminished processive nicking activities relative to that of the wild-type enzyme. These results, combined with previous analyses of other mutant enzymes and the cocrystal structure, provide a detailed architecture of endonuclease V-nontarget DNA interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号