共查询到20条相似文献,搜索用时 15 毫秒
1.
单成功 《计算机光盘软件与应用》2012,(21):79+123
文中介绍了粒子群算法优缺点,并对其粒子速度、个体认知以及种群认知的不足进行必要的改进,最后将优化后粒子群算法来验证SVR的网络安全性,结果表明粒子群优化算法对SVR网络安全性预测效果较好。 相似文献
2.
一种改进的粒子群算法在BP网络中的应用研究 总被引:6,自引:0,他引:6
采用Sigmoid激活函数的三层前向神经网络能够以任意精度模拟复杂的非线性关系,训练算法对神经网络模式分类的性能有较大影响。基于梯度下降的BP网络存在收敛速度慢、易陷入局部极小的缺陷。粒子群算法是一种全局优化算法。本文针对粒子群算法本身存在的不足加以改进,用改进后的粒子群算法对BP网络进行训练,从而克服BP网络的一些缺陷。采用IRIS分类问题验证了本文提出的方法的有效性。实验结果表明本文采用的方法比普通PSO-BP算法效果更好。 相似文献
3.
本文在分析常规粒子群优化算法的基础上,针对物流配送优化问题,采用一种改进粒子群优化算法,并根据粒子群的群体适应度标准差和理论最优值,给出收敛判断的依据。仿真结果表明该算法具有简单、高效、快速等特点。 相似文献
4.
本文提出了一种改进粒子群优化算法。在进化中增加了个体间的协作机制,这种改进后的学习行为更符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。最后将该方法用于PERT网络工期一费用模型求解,数字仿真表明了算法的有效性。 相似文献
5.
6.
自动化测试中,测试数据的自动生成技术是提供软件测试效率和效果的瓶颈.粒子群算法(PSO)具有简单、易实现、可调参数少等特点,在测试数据生成方法中得到初步应用.在具体应用过程中,为克服PSO易陷入局部极值的缺陷,对算法进行了改进,应用加入移动步长的混合粒子群算法(SwPSO)自动生成测斌数据,提高了PSO算法摆脱局部极小点的能力.文中对算法的原理和实现做了详细描述,并将其与传统的基于标准粒子群算法(PSO)和遗传算法(GA)来实现软件测试数据自动生成方法进行实验对比.结果表明,改进后的粒子群算法可以更高效地生成测试数据. 相似文献
7.
8.
从研究分析粒子群算法和郭涛算法的特点出发,提出一种综合两算法优点的混合算法。新算法改变了粒子的更新方式,以子空间搜索和串行搜索相结合的多点并行搜索,扩大了算法的搜索范围,减少了粒子对初值的依赖,增强了算法跳出局部最优的能力;通过后代较优个体变异产生子群,提高了算法局部寻优能力;实验证明,该算法正确高效。 相似文献
9.
针对锌电解过程各参数之间耦合严重、能耗高、建模困难,研究了锌电解电流效率与各工艺过程参数之间关系的数学模型,提出了一种改进的粒子群优化算法(IPSO)进行模型参数估计,该算法在粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,避免了算法陷于局部最优解,改善了优化算法性能;以锌电解过程实验数据为样本,采用改进的粒子群优化算法对模型进行参数估计和检验,并与基本粒子群算法和BP神经网络模型进行比较,仿真结果证明了模型的有效性。 相似文献
10.
改进的粒子群算法 总被引:2,自引:0,他引:2
陈丽丽 《计算机与数字工程》2009,37(8):33-35
针对基本粒子群算法容易陷入局部最优点,进化后期速度慢等缺点,设计了一种新的粒子群算法,将基本粒子群算法粒子行为基于个体极值点转化为个体自身极值与其他某一个个体极值的加权平均值,而全局极值点转化为群体中优秀个体极值的加权平均值。数值仿真实验表明,新算法比PSO具有更好的收敛性,能更快地找到问题的最优解。 相似文献
11.
黄福员 《电脑与微电子技术》2013,(21):6-9
将动量项与群体标准差引入算法设计中改进粒子群算法.提出一种基于改进型粒子群算法的知识约简算法。检验算例的实验结果表明,该算法能快速有效地搜索到最小约简,是处理复杂信息系统知识约简问题的一种有效方法. 相似文献
12.
13.
改进的粒子群优化算法 总被引:1,自引:0,他引:1
将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心,并且按一定概率选择其他粒子的个体极值点,设计了一种新的粒子群优化算法.新算法的学习行为符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解.实验结果表明了算法的有效性. 相似文献
14.
针对电力系统无功优化的特点,本文提出以有功网损最小为目标函数,以负荷节点电压质量和PV发电机节点无功出力为罚函数.以有功功率和无功功率为约束条件的数学模型,并应用改进的粒子群算法对无功优化问题进行求斛。该算法在权重系数和不活动粒子两方面进行改进,有效地解决了进化过程中陷入局部最优和搜索精度差的缺点。最后,将改进后的粒子群算法应用于IEEE14节电力系统进行无功优化算例分析,仿真结果验证了该算法解决电力系统无功优化问题的有效性和可行性。 相似文献
15.
云计算系统采用虚拟化技术可以更加灵活和高效地分配运算资源,便于管理员根据用户任务需求按需分配云计算资源。但虚拟化后的云计算中心存在种类多样、数量庞大的虚拟机资源,难以将虚拟机合理地放置到物理主机集群上并达到较好的负载均衡。为此,给出了云计算中心虚拟机放置到物理主机的负载均衡模型,采用改进后的粒子群算法(PSO)来求解最优解。最后通过和常用虚拟机放置算法的仿真对比实验,验证了所提云计算负载均衡优化算法的有效性。 相似文献
16.
现代工业发展要求迅速、可靠地实现故障诊断。针对粒子群约简算法易陷入局部最优等问题,提出了一种多种群量子粒子群优化算法(MIQPSO)。该算法对量子粒子群算法进行分群,并通过接种疫苗,指导粒子朝更优化方向进化,提高了量子粒子群的收敛速度和寻优能力。利用UCI相关数据集,通过对Hu算法、粒子群算法、量子粒子群算法、多种群量子粒子群算法的粗糙集属性约简验证,结果表明,基于多种群量子粒子群优化的约简算法具有良好的约简效果。 相似文献
17.
房宜汕 《计算机与数字工程》2014,(10)
由于传统的图像增强方法在适应性方面存在不足,论文提出一种改进的图像增强方法。这种改进的算法是实变参数量子粒子群优化 QPSO-tp 算法。实验结果表明,改进后的算法在全局搜索能力和收敛精度上要优于原 QPSO 算法,具有调节参数少、随机性更强等优点。接着将遥感灰度图像的非线性变换增强过程用最优化问题进行处理,用 QPSO-tp 算法进行参数寻优,能够极大的提高图像的增强效果。 相似文献
18.
为了提升自动化设备电力调度的评估水平,采用广泛使用的神经网络算法,通过对电力系统参数的重新设置,根据正态分布衰减惯性权重策略对粒子群算法进行了改进和优化。在此基础上,提出正态分布衰减惯性权重的粒子群优化(NDPSO)算法,并利用检测函数分析算法性能。试验结果表明,NDPSO算法最佳正态分布的趋势参数为0.443 3;在Sphere函数上优化结果的最小值为555.31,平均值为2 034.00,标准差为919.58,惯性权重在前期的取值较大。上述结果与其他算法对比都处于领先水平。所设计的算法在保证收敛精度的同时,加快了收敛速度。改进的粒子群算法对神经网络模型具备一定优化能力,能够兼顾全局搜索和局部开发。该研究对电力调度自动化中设备的评估具有重要意义。 相似文献
19.
一种混合粒子群算法及其在Job Shop问题中的应用 总被引:2,自引:1,他引:2
粒子群算法是一种新颖的演化计算技术,具有思想简单、容易实现的优点,被广泛应用于连续空间的优化。结合遗传算法的思想提出一种新的进化方式并用于Job Shop离散空间优化,进一步结合粒子群算法的群体多样性和禁忌搜索算法的集中搜索性提出一种粒子群算法和禁忌搜索算法的混合策略。用Job Shop问题作为测试基准,仿真试验显示混合粒子群算法是可行和有效的。 相似文献