共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations have been conducted to study the interaction of human sex-determining region Y (hSRY) protein with DNA. For this purpose, simulations of the hSRY high mobility group (HMG) domain (hSRY-HMG) with and without its DNA target site, a DNA octamer, and the DNA octamer alone have been carried out, employing the NMR solution structure of hSRY-HMG-DNA complex as a starting model. Analyses of the simulation results demonstrated that the interaction between hSRY and DNA was hydrophobic, just a few hydrogen bonds and only one water molecule as hydrogen-bonding bridge were observed at the protein-DNA interface. These two hydrophobic cores in the hSRY-HMG domain were the physical basis of hSRY-HMG-DNA specific interaction. They not only maintained the stability of the complex, but also primarily caused the DNA deformation. The salt bridges formed between the positive-charged residues of hSRY and phosphate groups of DNA made the phosphate electroneutral, which was advantageous for the deformation of DNA and the formation of a stable complex. We predicted the structure of hSRY-HMG domain in the free state and found that both hSRY and DNA changed their conformations to achieve greater complementarity of geometries and properties during the binding process; that is, the protein increased the angle between its long and short arms to accommodate the DNA, and the DNA became bent severely to adapt to the protein, although the conformational change of DNA was more severe than that of the hSRY-HMG domain. The sequence specificity and the role of residue Met9 are also discussed. 相似文献
2.
The interaction of adenylyl-3',5'-cytidine (ApC) with ribonuclease-A (RNAase-A) was studied by steady-state kinetics and ultraviolet difference spectroscopy. X-ray difference Fourier synthesis at 4 A resolution was also used to study the binding of ApC to RNAase-S. Unlike well-studied compounds like uridylyl-3',5'-adenosine, ApC binds in an unique way: (1) the cytidine moiety is bound to the B1 and R1 sites, (2) the adenosine moiety protrudes to the solution and is not fixed spatially and (3) the phosphate group is bound to the non-specific site (the "Po site") previously postulated (Sawada, F. and Irie, M. (1969) J. Biochem. (Tokyo) 66, 415--418) as the binding site for the 5'-phosphate of uridine 2',5'-diphosphate or uridine 3',5'-diphosphate. This conclusion is consistent with that derived for adenylyl-3',5' -4-thiouridine based on CD difference spectroscopy (White, M.D., Keren-Zur, M. and Lapidot, Y. (1977) Nucleic Acid Res. 4, 843--851). The "Po site" is most likely the epsilon-amino group of Lys 66. 相似文献
3.
In the present study we examined the influence of FSH as well as a number of well-established cytokines on interleukin (IL)-6 by rat granulosa cells in culture. Increasing concentrations of FSH, IL-1 alpha, IL-1 beta, tumor necrosis factor alpha (TNF alpha), and lipopolysaccharide (LPS) were incubated for 48 h with undifferentiated granulosa cells obtained from diethylstilbestrol-primed immature rats. The results demonstrate that FSH, IL-1 alpha, IL-1 beta, and LPS, but not TNF alpha, caused significant concentration-dependent increases in IL-6 release. We also examined the effects of dibutyryl-cAMP, forskolin, and 3-isobutyl-1-methyl-xanthine (IBMX) on IL-6 release by granulosa cells. Each of these agents caused a significant concentration-dependent increase in IL-6 production by granulosa cells in either the absence or presence of FSH. Taken together, these results show that the granulosa cell is not only a likely source of IL-6 but that the release of IL-6 can be regulated. Moreover, evidence suggests that cAMP may serve as a second messenger for the stimulated secretion of IL-6 by undifferentiated granulosa cells. 相似文献
4.
5.
Molecular dynamics simulations of wild-type bacteriorhodopsin (bR) and of its D85N, D85T, D212N, and Y57F mutants have been carried out to investigate possible differences in the photoproducts of these proteins. For each mutant, a series of 50 molecular dynamics simulations of the photoisomerization and subsequent relaxation process were completed. The photoproducts can be classified into four distinct classes: 1) 13-cis retinal, with the retinal N-H+ bond oriented toward Asp-96; 2) 13-cis retinal, with the N-H+ oriented toward Asp-85 and hydrogen-bonded to a water molecule; 3) 13,14-di-cis retinal; 4) all-trans retinal. Simulations of wild-type bR and of its Y57F mutant resulted mainly in class 1 and class 2 products; simulations of D85N, D85T, and D212N mutants resulted almost entirely in class 1 products. The results support the suggestion that only class 2 products initiate a functional pump cycle. The formation of class 1 products for the D85N, D85T, and D212N mutants can explain the reversal of proton pumping under illumination by blue and yellow light. 相似文献
6.
7.
A new mammalian DNA polymerase with 3' to 5' exonuclease activity: DNA polymerase delta 总被引:1,自引:0,他引:1
A new species of DNA polymerase has been purified more than 10 000-fold from the cytoplasm of erythroid hyperplastic bone marrow. This DNA polymerase, in contrast to previously described eukaryotic DNA polymerases, is associated with a very active 3' to 5' exonuclease activity. Similar to the 3' to 5' exonuclease activity associated with prokaryotic DNA polymerases, this enzyme catalyzes the removal of 3'-terminal nucleotides from DNA, as well as a template-dependent conversion of deoxyribonucleoside triphosphates to monophosphates. The exonuclease activity is not separable from the DNA polymerase activity by chromatography on DEAE-Sephadex or hydroxylapatite, and upon sucrose density gradient centrifugation the two activities cosediment at 7 S or at 11 S depending on the ionic strength. Both exonuclease and polymerase activities have identical rates of heat inactivation and both are equally sensitive to hemin and Rifamycin AF/013, inhibitors of DNA synthesis that act by binding to DNA polymerase and causing its dissociation from its template/primer. These results are consistent with the coexistence of two enzyme activities in a single protein. 相似文献
8.
The mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) were measured in the adult rat striatum following systemic administration of dopamine receptor agonists. Double-labeling in situ hybridization histochemistry was used to measure GAD65 or GAD67 mRNA levels in neurons labeled or not with a preproenkephalin (PPE) cRNA probe. Chronic treatment with the D1/D2 dopamine receptor agonist apomorphine or with the D1 dopamine receptor agonist SKF-38393 induced an increase in GAD65 but not GAD67 mRNA levels in different sectors of the striatum. These effects were abolished by pre-administration of the D1 dopamine receptor antagonist SCH-23390. On double-labeled sections, GAD65 mRNA labeling was distributed in neurons labeled and unlabeled with the PPE cRNA probe. About half of all neuronal profiles labeled with the GAD65 cRNA probe were also labeled with the PPE cRNA probe. Quantification of labeling at cellular level demonstrated a significant increase of GAD65 mRNA levels in PPE-unlabeled neurons. On the other hand, no significant changes of GAD65 mRNA levels were detected in PPE-labeled neurons. Our results demonstrate a differential effect of dopamine receptor agonists on striatal GAD65 and GAD67 gene expression. In particular, we show that GAD65 mRNA levels are selectively increased in presumed striato-nigral neurons following treatments with dopamine receptor agonists. These data provide evidence that the GAD65 isoform is preferentially involved in the regulation of GABAergic neurotransmission in striato-nigral neurons. 相似文献
9.
10.
11.
12.
G Pesole S Liuni G Grillo M Ippedico A Larizza W Makalowski C Saccone 《Canadian Metallurgical Quarterly》1999,27(1):188-191
The 5' and 3' untranslated regions of eukaryotic mRNAs may play a crucial role in the regulation of gene expression controlling mRNA localization, stability and translational efficiency. For this reason we developed UTRdb (http://bigarea.area.ba.cnr.it:8000/BioWWW/#U TRdb), a specialized database of 5' and 3' untranslated sequences of eukaryotic mRNAs cleaned from redundancy. UTRdb entries are enriched with specialized information not present in the primary databases including the presence of nucleotide sequence patterns already demonstrated by experimental analysis to have some functional role. All these patterns have been collected in the UTRsite database so that it is possible to search any input sequence for the presence of annotated functional motifs. Furthermore, UTRdb entries have been annotated for the presence of repetitive elements. 相似文献
13.
[reaction: see text] A novel total synthesis of 3',5'-C-branched uridine azido acid has been accomplished using stereoselective aldehyde alkynylation, Ireland-Claisen rearrangement, and iodolactonization as the key reactions. Compared to traditional routes that start from carbohydrates, the present methodology is more efficient, flexible for future optimization, and provides access to both enantiomers of the products. Because the key chemistry does not involve the 3'- and 5'-C substituents, our route is a general approach to 3',5'-C alkyl nucleoside analogues. 相似文献
14.
15.
16.
17.
18.
The interaction of the 11-mer oligodeoxypyrimidine d(TCTTCTUTCCT) with the 17 bp duplex d(CGCTAGAAGAAAGGACG).d(CGTCCUTTCTTCTAGCG) in forming an intermolecular DNA triplex has been examined in solution by surface plasmon resonance (SPR), UV thermal denaturation, circular dichroism (CD), and NMR methods. Thermodynamic data were also acquired for the shorter 15 bp target duplex d(CGCTAGAAGAAAGGA). d(TCCUTTCTTCTAGCG), which forms a 3' flush-ended parallel triplex. CD titrations at pH 5 gave a triplex --> (duplex + strand) dissociation constant Kd of 0.5 microM at 15 degreesC and approximately 2 microM at 25 degreesC for both the 11-15.15 and 11-17.17 systems, in agreement with analysis of the UV melting data and a direct calorimetric measurement. In contrast, the "apparent" Kd value determined by SPR was 10-20-fold smaller. The rate constant for dissociation (kd) of the third strand from the triplex was found to be approximately 0.0002 s-1 at 25 degreesC by SPR. The rate constant for exchange between the triplex and duplex states determined by NMR was approximately 2 s-1 at 40 degreesC. The dissociation kinetics measured by SPR are considerably underestimated, which largely accounts for the poor estimation of Kd using this technique. Extensive 1H NMR assignments were obtained for both the 17 bp DNA duplex and the triplex. Large changes in chemical shifts were observed in the purine strand of the host duplex, but only small shift changes were induced in the complementary pyrimidine strand. Dramatic differences in shifts were observed for the G and A residues, especially in the minor groove, consistent with only small, localized conformational changes in the underlying duplex. The magnitude of the shift changes decreased to baseline within one base of the 3' triplex-duplex junction and over two to three bases at the 5' junction. Chemical shift changes at the 5' junction suggest small conformational anomalies at this site. COSY and NOESY spectra indicate that the nucleotides are in the "S" domain in both the triplex and duplex states. These data rule out major conformation changes at the triplex-duplex boundaries. NOEs between pyrimidines in the third strand and those in the duplex showed proximity for these bases in the major groove, which could be ascribed to buckling of the Hoogsteen bases out of the plane of the Watson-Crick base pairs. 相似文献
19.
20.
BACKGROUND: Many new ribozymes, including sequence-specific nucleases, ligases and kinases, have been isolated by in vitro selection from large pools of random-sequence RNAs. We are attempting to use in vitro selection to isolate new ribozymes that have, or can be evolved to have, RNA polymerase-like activities. As phosphorimidazolide-activated nucleosides are extensively used to study non-enzymatic RNA replication, we wished to select for a ribozyme that would accelerate the template-directed ligation of 5'-phosphorimidazolide-activated oligonucleotides. RESULTS: Ribozymes selected to perform the desired template-directed ligation reaction instead ligated themselves to the activated substrate oligonucleotide via their 5'-triphosphate, generating a 5'-5' P1,P4-tetraphosphate linkage. Deletion analysis of one of the selected sequences revealed that a 54-nucleotide RNA retained activity; this small ribozyme folds into a pseudoknot secondary structure with an internal binding site for the substrate oligonucleotide. The ribozyme can also synthesize 5'-5' triphosphate and 5'-5' pyrophosphate linkages. CONCLUSIONS: The emergence of ribozymes that accelerate an unexpected 5'-5' ligation reaction from a selection designed to yield template-dependent 3'-5' ligases suggests that it may be much easier for RNA to catalyze the synthesis of 5'-5' linkages than 3'-5' linkages. 5'-5' linkages are found in a variety of contexts in present-day biology. The ribozyme-catalyzed synthesis of such linkages raises the possibility that these 5'-5' linkages originated in the biochemistry of the RNA world. 相似文献