首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dy3+ doped Mn-Zn ferrites Mn0.3Zn0.7Fe2-xDyxO4(x=0,0.01,0.02,0.03,0.04)were prepared by the conventional solid-state reaction.The crystal structure,surface morphology and electromagnetic properties of the calcined samples were characterized by X-ray diffraction analysis(XRD),scanning electron microscopy(SEM) and network analyzer(Agilent 8722ET).All the XRD patterns showed the single phase of the spinel-type ferrite without other intermediate when x≤0.03.The average crystallite size was about 44?56 nm.The mi...  相似文献   

2.
Traditional ferrites are of poor electromagnetic wave (EMW) absorption while doping rare earth elements (REEs) can greatly enhance their permeability to improve the EMW loss performance. In this study, Co-Zn ferrite nanoparticles doped with various amounts of REEs (Gd3+, Nd3+ and Pr3+) were synthesized by a hydrothermal method, and their particle morphology and an EMW absorption performance were characterized by using transmission electron microscopy (TEM) and a Vector network analyzer (VNA). The results show that the initial spherical Co-Zn ferrite nanoparticles present an irregular quadrilateral structure after Gd3+ doping, and the average particle size of Co0.5Zn0.5−xGdxFe2O4 increases from 26 to 50 nm with x increasing from 0 to 0.35. At x of 0.25, the reflectivity absorbance achieves −27.94 dB at 18 GHz with the effective absorption bandwidth (EAB) of 4.08 GHz at a sample thickness of 2.5 mm. When Nd3+ doping amount reaches x = 0.3, the minimum reflection loss (RL) is −25.63 dB at 18 GHz and EAB is 3.91 GHz. Doping Pr3+ (x = 0.25) in the sample broadens EAB, and the minimum RL is −16.1 dB at 16.81 GHz and EAB is 7.31 GHz. This study shows that the magnetic moment produced by doping REES can form magnetic domains, which affects the incident EMW and improves the magnetic loss. It is expected that REEs-doped Co-Zn ferrite nanoparticles can be used as efficient electromagnetic shielding materials in aerospace.  相似文献   

3.
A series of W-type ferrites with the composition ofBal-xLaxCo2Fe16O27(where, x =0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared by solid-state reaction method. The structure transformations of the ferrites were examined by XRD, DTA-TG and XPS, and the microwave-absorbing properties were investigated by evaluating the permeability and permittivity of materials(μτ,ετ, ). The results showed that the phase-transition temperature increased with the addition of La^3+ content, and a single-phase was formed at 1250℃ at last. Microwave properties were obviously improved as a result of the substitution of La^3+ for Ba^2+ at the frequency range of 0.5 - 18.0 GHz.  相似文献   

4.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   

5.
Microwave(MW) frequency based wireless communications and electronic devices became prospective due to several ramifications.To meet this need,a series of neodymium ions(Nd3+) substituted barium ferrite composites with composition(20)BaO:(80-x)Fe_2 O_3:(x)Nd_2 O_3(0≤x≤3 mol%) was prepared at1100℃using solid-state reaction method.We evaluated the effect of various Nd3+ions contents on the surface morphology,structure,and magnetic properties of the as-synthesized barium ferrite composites.Meanwhile,microwave reflection loss,complex permittivity and permeability were determined using the transmission/reflection line method in the X-band(8—12 GHz).SEM image of the composites shows that the surface morphology consists of rough and porous microstructures.XRD patterns of the un-doped composites reveal the existence of BaFe_(12)O_(19)(hexagonal) and Fe_(21.333)O_(32)(tetragonal) crystalline phases.Furthermore,a new hexagonal crystalline phase of Ba_6 Nd_2 Fe_4 O_(15) with the crystallite sizes between 15 and 67 nm is observed due to Nd3+ions substitution in the composite.The saturation magnetization of the composite containing 2 mol% of Nd3+does not exhibit any significant alteration compared to the one devoid of Nd3+.The complex relative permitivity and permeability of the achieved composites enriched in Ba_6 Nd_2 Fe_4 O_(15) and BaFe_2 O_4 phases disclose significant MW frequency dependence.The composites also display selective MW absorption in the X-band which could be useful for diverse applications.  相似文献   

6.
In this paper, the effect of Ba2+ ions A-site doping LaFeO3 on structure, magnetic properties and microwave absorption properties was investigated by the sol–gel method. According to the TEM and FullProf refinement results, the structure of LaFeO3 changes from orthogonal (SG: Pnma) to cubic (SG: Pm-3m) when the Ba doping amount is x = 0.4. The SEM image shows that the particles size tends to decrease with the increase of Ba content. The production of weak ferromagnetism indicates that Ba doping has a significant effect on the magnetic properties of LaFeO3. The Neel temperature (TN) decreases significantly with the increase of Ba doping amount. An appropriate amount of Ba doping can effectively increase the dielectric and magnetic loss of LaFeO3 ceramics powders. The increase permittivity (ε′ and ε″) may be attributed to the hopping of the electrons between the Fe3+ and Fe4+ ions with the Ba2+ ions doping. The minimum reflection loss (RLmin) of La0.9Ba0.1FeO3 at 6.72 GHz reaches ?30.04 dB, its effective bandwidth (RL ≤ ?10 dB) is 2.1 GHz, and the matching thickness is only 3.2 mm. These results indicate that Ba doping can effectively control the microwave absorption properties of LaFeO3, especially in the C-band.  相似文献   

7.
以雾化Fe85Si2Al6Cr7粉和溶胶凝胶法制备的W型六角晶系Ba1Co0.9Zn1.1Fe16O27铁氧体粉末为原料,通过高能球磨复合改性得到FeSiAlCr合金/W型六角晶系Ba铁氧体复合粉体。采用X射线衍射仪(XRD)和扫描电镜(SEM)对该粉体的微结构和形貌进行分析和观察,利用微波矢量网络分析仪系统测定粉体试样在2~18 GHz频段内的复介电常数和复磁导率以及吸波涂层试样板的吸波性能,研究该复合粉体的微波电磁特性和电磁损耗性能。结果表明,FeSiAlCr合金/W型六角晶系Ba铁氧体复合粉体颗粒保持W型铁氧体的六角片状晶粒形貌和微结构;其ε′、ε″、μ′和μ″均高于W型铁氧体而低于Fe合金的对应值;FeSiAlCr合金含量与复合材料的磁损耗和介电损耗的相对强弱密切相关,Fe合金含量适中的复合材料,其吸波涂层厚度为2 mm时,在2~18 GHz全频段的吸波性能高于20 dB,峰值点达50 dB。  相似文献   

8.
ErxTi0.1Zr0.9–xO2–1.5x (x = 0.04, 0.05, 0.06, 0.07, 0.08) ceramics were synthesized by a solid-state reaction method. The influence of the Er3+ addition on the phase composition, Vickers hardness, fracture toughness, and thermal conductivity of this ceramic material was investigated. The X-ray diffraction results reveal that the c-ZrO2 content increases from 1.85 vol% to 33.89 vol%, and the percentage of t-ZrO2 decreases from 98.15 vol% to 66.11 vol% with the increase in Er3+ content from 4 mol% to 8 mol%. Moreover, the addition of Er3+ is beneficial to the volume expansion of the unit cell. At the same time, the incorporation of Er3+ weakens the coordination of oxygen ions around the metal cations, resulting in a corresponding decrease in the tetragonality of the t-ZrO2. The Vickers hardness and fracture toughness of the ErxTi0.1Zr0.9–xO2–1.5x ceramics show increasing and decreasing trends, respectively. The thermal conductivity has a significant decline due to point defects caused by the Er3+ doping. The 8ETZ ceramic exhibits the highest Vickers hardness (12.7 GPa), the lowest fracture toughness (7.6 MPa?m1/2), and the lowest average thermal conductivity (1.85 W/(m·K)) in the temperature range of 200–1000 °C. All of the above properties are higher than those of the Y2O3-stabilized ZrO2 ceramic.  相似文献   

9.
In the present computational study,we found that Er:Lu2O3materials have promise for application in laser applications.The crystal structure and the electronic and optical properties of Er:Lu2O3materials were studied using first-principle calculations under the framework of density functional theory.Based on the experimental and calculated results,the structure of Lu2O3was established.The calculated results show that doping by Er3+can effectively improve its absorption coefficient in the ultraviolet region and improve the static dielectric constant of Lu2O3.As the doping concentration of Er3+increases,the energy of the valence band electrons excited to the conduction band decreases,and the transition is more likely to occur.The absorption coefficient,reflectance,and electron energy loss spectroscopy are bathochromic shifted.The Lu2-xErxO3(02O3.  相似文献   

10.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   

11.
La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem-perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and...  相似文献   

12.
A series of CaMoO 4 :xTb 3+(x=0.01,0.03,0.05,0.07,0.09,0.15 and 0.20) phosphors in pure phase were prepared via high temperature solid-state reaction approach.The crystal structure of the phosphors was investigated by X-ray diffraction(XRD),and the optical properties were investigated by Fourier transform infrared spectroscopy(FT-IR),ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) spectroscopy.The PL spectra illustrated that these phosphors could be efficiently excited by the charge transfer band of the host and the energy transfer efficiency from the host to the doped activator reached 60% when the doping concentration of the activator Tb 3+ was 20 mol.%.The concentration quenching occurred at x=10 mol.%,from which the critical distance of activator was calculated to be about 1.14 nm.The CIE coordinates were estimated to be close to the standard green value.The host sensitized samples had potential application as green phosphors.  相似文献   

13.
The Ba6-3xSm8+2xTi18O54 (x=2/3) microwave dielectric ceramics were prepared by traditional solid sate reaction technique. The ex-periment was based on the Ba6-3xSm8+2xTi18O54 (BST) microwave dielectric ceramics doped with a certain amount of Bi2O3, then the effects of BaxSr1-xTiO3 additives on the structure and microwave dielectric properties of Ba6-3xSm8+2xTi18O54 ceramics were investigated using X-ray diffraction and scanning electron microscopy. In this study, the small amount substitution of Sr for Ba was effective for the microwave dielec-tric properties of BST, especially the τf could be tuned to near zero. The result showed that the BST possessed excellent dielectric properties when the addition of Bi2O3 and BaxSr1-xTiO3 was 1 wt.% respectively: εr=79.6, Q?f=10789 GHz, τf=-1.5 ppm/oC.  相似文献   

14.
In this work, the impact of the doping process on the photoluminescence emission of CaWO4 as a function of the concentration of Eu3+ cation (0.01 mol%, 0.02 mol%, 0.04 mol%, 0.06 mol%, 0.08 mol%, and 0.10 mol%) is discussed in detail. Ca1?xWO4:xEu3+ samples were successfully synthesized by a simple co-precipitation method followed by microwave irradiation. The blue shift in the absorption edge confirms the quantum confinement effect and the band gap energy covers the range from 3.91 to 4.18 eV, as the amount of Eu3+ cations increases. The experimental results are sustained by first-principles calculations, at the density functional theory level, to decipher the geometry and electronic properties, thereby enabling a more accurate and direct comparison between theory and experiment for the Ca1?xWO4:xEu3+ structure.  相似文献   

15.
Ba6-3xEu8+2xTi18O54 (x=2/3) (BET) ceramic powders were synthesized by the Pechini method using ethyl-enediaminetetraacetic acid (EDTA) as a chelating agent. A milk-white, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized BET ceramic powders were prepared by sintering and smashing ceramics samples, without the formation of any intermediate phases. Meanwhile, the crystal structure, which was determined by X-ray diffraction, had important effect on the microwave dielectric properties of BET. The BET ceramics had good microwave dielectric characteristics: ɛr = 72.13, Qf = 7111 GHz, τf = −36.53 × 10−6/°C.  相似文献   

16.
Comprehensive study of the structure and properties of ferrite materials prepared from powders with different specific surface (0.4 m2/g<Ssp<1.2 m2/g) shows that the optimum specific surface of manganese—zinc ferrite powders is about 0.6 m2/g. With an increase in the specific surface of nickel—zinc and barium ferrite powders the porous crystalline structure of sintered specimens and most of the main electromagnetic properties of ferrite articles are improved.  相似文献   

17.
Investigation on the bright and stable upconversion(UC) phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors with blue,cyan and yellowish green,which are caused by the energy transfer and crossrelaxation processes,are obtained by altering Er~(3+),Tm~(3+)and Yb~(3+) concentrations in Er~(3+)singly,Er~(3+)-Tm~(3+)-Yb~(3+)co-and tri-doped double perovskite La_2 ZnTiO_6(LZT) phosphors synthesized by a simple solid-state reaction.In addition,excellent infrared emission at 801 nm located at "first biological windo w" is collected in Tm~(3+)-Yb~(3+)co-doped phosphors.Meanwhile,the temperature sensing properties based on the thermally coupled levels(~2 H_(11/2)/~4S_(3/2)) of Er~(3+) ions were analyzed from 298 to 573 K of LZT:0.15 Er~(3+)/0.10 Yb~(3+)phosphor,demonstrating that the maximal sensitivity value is about56×10-4 K~(1-) at 448 K.All these results imply that this kind of UC material has potential applications in display,bioimaging and optical device.  相似文献   

18.
In this paper,polycrystalline samples of Bi_(1-x)Sm_xFeO~3(x=0,0.05,0.1,0.15) were successfully synthesized by sol-gel method.The effects of Sm concentration on the crystal structure,morphology,chemical states,magnetic properties and microwave absorption performance were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),a vibrating sample magnetometer(VSM) and a Vector network analyzer(VNA),respectively.The results show that the rare earth Sm doping causes the crystal structure to change.When x≤0.1,Bi_(1-x)Sm_xFeO_3 is the distorted rhombohedral structure with space group R3 c.With the increase of Sm doping amount to x=0.15,the phase structure of Bi_(1-x)Sm_xFeO_3 changes from rhombohedral structure to cubic structure with the space group Pm3 m.The particle size decreases with the increase of the Sm doping amount.The analysis results show that Sm doping can effectively reduce the oxygen vacancies and significantly improve its magnetic properties.The results exhibit that moderately doped rare earth Sm element can effectively improve microwave absorption properties of Bi_(1-x)Sm_xFeO_3 powders.When Sm doping amount of x is 0.1,the Bi_(0.9)Sm_(0.1) FeO_3 compound has good microwave absorption performance,and the minimum reflection loss value of Bi_(0.9)Sm_(0.1)FeO_3 powder reaches about-32.9 dB at11.7 GHz,and its effective absorption bandwidth(RL -10 dB) is 2.6 GHz with the optimal matching thickness of 2.0 mm.  相似文献   

19.
Rare earth Er3+ doped (Sm1–xErx)2Zr2O7 (x = 0.1, 0.2, and 0.3) ceramic samples were synthesized using a solid state reaction method. The microstructure and thermal properties of these ceramics were investigated to evaluate their potential as thermal barrier coating materials. The results show that ceramics are compact with regular-shaped grains of 1–5 μm size. (Sm1–xErx)2Zr2O7 has a pyrochlore structure mainly determined by ionic radius ratio, but the ordering degree decreases with increase of the Er2O3 content. There is no phase transformation from 1000 to 1200 °C, and the (Sm1–xErx)2Zr2O7 ceramics exhibit excellent phase stability during thermal treatment at 1200 °C for 100 h and 1400 °C for 50 h. The thermal conductivities of dense (Sm1–xErx)2Zr2O7 ceramics range from 1.52 to 1.59 W/(m·K), which is lower than that of Sm2Zr2O7, and decrease as the Er2O3 content increases. Besides, the thermal expansion coefficient of (Sm1–xErx)2Zr2O7 is higher than that of Sm2Zr2O7.  相似文献   

20.
A series of Ln3+ (Ln3+ = Er3+/Dy3+) ions doped Na2NbAlO5 (NNAO) phosphors were synthesized by solid-state method. The Er3+ and Dy3+ ions doped phosphors were characterized by XRD, photoluminescence (PL) and decay profiles. The Ln3+-doped samples are consistent with the pure NNAO phase which is analyzed by the X-ray diffraction result. The PL graphs show that the intensity of luminescence increases with the increasing doping concentrations up to their critical certain values and then decreases at higher concentrations due to the concentration quenching effect of Er3+/Dy3+ ions. The energy level diagrams containing the positions of 4f and 5d energy levels of Er3+ and Dy3+ ions have been established and studied. In addition, under the ultraviolet light, the prepared NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors show the characteristic green (Er3+), cyan (Dy3+) emission, respectively. Under the excitation of 365 nm, the quantum efficiencies of NNAO:0.01Er3+ and NNAO:0.03Dy3+ phosphors are measured to be 61.7% and 72.2%, respectively. The obtained results indicate that the new NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors are promising applications in white-light emitting diodes field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号