共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
基于NOAA/AVHRR热红外数据的城市热岛强度年内变化特征 总被引:3,自引:1,他引:3
采用ENVI/IDL编程技术,实现NOAA/AVHRR数据的校准、几何纠正、云污染识别与剔除、影像特征统计与输出等过程的批处理自动化操作。并以济南市中心城区为例,通过2005~2006年间获取的白天NOAA/AVHRR影像热红外波段调查了济南市区城市热岛强度的年内变化规律与过程。研究结果表明:① 济南市区全年大部分时间存在热岛现象,4~9月份城市热岛效应较为明显,尤以5、7、8月为甚。② 全年城市热岛平均强度2.77℃,最强的热岛效应出现于7月下旬至8月中旬间。③ 从季节分布来看,济南市区夏季热岛效应最明显,春季次之,秋、冬两季较弱。④ 城市热岛强度与城、郊地表温度存在正相关关系,但相关程度较差。 相似文献
6.
7.
利用多时上NOAA-AVHRR的中国归一化植被指数NDVI数据进行主成分分析,并与从NDVI派生的4个生物不数作相关分析,结果表明:主成分变换既压缩了信息,将21个月的信息主要压缩到前4个主分量,又提取了关键的变化信息,第一主分量反映基本植被覆信息,第二、第三和第四主分量反映植被季相变化信息,正是由于一年12个月的NDVI曲线反映了植被季相变化特征,使得主成分变换得到的各主分量具有一定的生物学意义,而且17种中国典型植被在这4个主分量图像上存在一定的差异性,使其具有进行较高精度土地覆盖分类的潜力。 相似文献
8.
9.
10.
11.
基于地表能量平衡理论,利用NOAA/AVHRR数据,采用SEBS模型,计算了研究区15年地表蒸散量,从年、季度和月等三个时间尺度对其进行时空变化分析。结果显示:(1)各年平均蒸散量相差较大,最大的是1988年,最小的是1996年;月平均蒸散量最大值出现在5月,最小值出现在12月,形成一单峰型曲线;第二季度平均蒸散量最大,第四季度最小,其分布曲线也为单峰型。(2)多年平均蒸散量的空间分布东半部明显大于西半部,最大的是扶余县,最小的是通榆县;各市县的月平均蒸散量分布仍为单峰型曲线,在5月达到最大值,12月最小,与全区的月平均蒸散量分布曲线一致;各市县第一季度和第四季度平均蒸散量相差不大,第二和第三季度相差较大,但总体分布趋势与全区一致,仍为单峰型曲线。以上结果表明:研究区区域蒸散时空分布极不均匀,强烈的蒸散作用为研究区生态环境恶化提供了有利条件。 相似文献
12.
13.
森林过火面积的遥感测算方法 总被引:16,自引:0,他引:16
根据对近年来多次特大森林火灾和相应的气象卫星资料的分析,提出利用NOAA/AVHRR数据测算森林大火的过火面积的四种方法,即灰度修正像元法、植被修正像元法、坐标法和蔓延法。在GIS地面信息数据库支持下,利用这4种方法能准确、快速地计算出过火面积。经今春应急评估试运行验证,森林大火过火面积测算精度达90%。 相似文献
14.
Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index 总被引:4,自引:0,他引:4
This study examined the effect of biomass-burning aerosols and clouds on the temporal dynamics of the normalized difference vegetation index (NDVI) exhibited by two widely used, time-series NDVI data products: the Pathfinder AVHRR land (PAL) dataset and the NASA Global Inventory Monitoring and Modeling Studies (GIMMS) dataset. The PAL data are 10-day maximum-value NDVI composites from 1982 to 1999 with corrections for Rayleigh scattering and ozone absorption. The GIMMS data are 15-day maximum-value NDVI composites from 1982 to 1999. In our analysis, monthly maximum-value NDVI was extracted from these datasets. The effects were quantified by comparing time-series of NDVI from PAL and GIMMS with observations from the SPOT/VEGETATION sensor and aerosol index data from the Total Ozone Mapping Spectrometer (TOMS), and results from radiative transfer simulation. Our analysis suggests that the substantial large-scale NDVI seasonality observed in the south and east Amazon forest region with PAL and GIMMS is primarily caused by variations in atmospheric conditions associated with biomass-burning aerosols and cloudiness. Reliable NDVI data can be typically acquired from April to July when such effects are relatively low, whereas there is a few effective NDVI data from September to December. In the central Amazon forest region, where aerosol loads are relatively low throughout the year, large-scale NDVI seasonality results primarily from seasonal variations in cloud cover. Careful treatment of these aerosol and cloud effects is required when using NDVI from PAL and GIMMS (or other source) to determine large-scale seasonal and interannual dynamics of vegetation greenness and ecosystem-atmosphere CO2 exchange in the Amazon region. 相似文献
15.
利用LandsatTM6热红外遥感数据定量反演了干旱地区的地表温度,研究结果表明,研究区典型地表覆盖类型的地表亮温比地表真实温度低0.4~1K,遥感反演的地面真实温度与当地3月下旬的实测温度误差在0.8K以下,这说明用LandsatTM6定量反演干旱区的地表温度是可行的。研究结果还表明,地下水富集带地表温度具有异常现象,其地表温度比地表水体高5K左右,而比其它地表类型低7K以上,据此,可以利用热红外遥感技术有效地探测干旱区地下水富集带的信息。 相似文献
16.
Evapotranspiration (ET) using the Integral NOAA-imagery processing Chain (iNOAA-Chain) is quantified by implementing visible and thermal satellite information on a regional scale. ET is calculated based on the energy balance closure principle. The combination of evaporative fraction (EF), soil heat flux and instantaneous net radiation, results in an instantaneous spatial distribution of ET values. Surface broadband albedo and land surface temperature (LST) serve to determine EF. EF is derived using four methods based on NOAA/AVHRR satellite imagery. Instantaneous evapotranspiration, i.e. at time of satellite overpass, on European continental scale with emphasis on forest stands is estimated using the iNOAA-Chain. Finally, the estimated net radiation (Rn), soil heat fluxes (G0) and evaporative fraction and evapotranspiration at time of satellite overpass are validated against EUROFLUX site data for the growing season of 1997 (March-October). The regression line for the pooled Rn (iNOAA-Chain versus EUROFLUX) has a slope, intercept, Pearson product moment correlation coefficient (R2) and relative root mean square error (RRMSE) of respectively 0.943, 17.120, 0.926 and 5.5%. The soil heat fluxes, calculated with two approaches are not-well modelled with slopes smaller than − 3.000 and a R2 in the order of zero. We observe a slight underestimation of the iNOAA Chain estimated EF. The regression line for pooled EF data for the best performing method (SPLIT-method) has a slope of 0.935, an intercept of 0.041 and the R2 is 0.847. A pooled RRMSE EF value of 12.3% is found. The pooled slope, intercept, R2 and RRMSE for EF derived with SORT-method 1 are respectively 0.449, 0.251, 0.043 and 65.1%, with SORT-method 2, 0.567, 0.203, 0.174 and 39.1%, and with SORT-method 3, 0.568, 0.254, 0.288, and 32.8%. Also instantaneous evapotranspiration is underestimated with a pooled RRMSE on ET of 23.4%. The regression curve of pooled ET data for the best performing method has a slope of 0.889 an intercept of 15.880 and a Pearson product moment correlation coefficient of 0.771. The other method gives a slope of 0.781, an intercept of 17.541 and a R2 of 0.776. Error propagation analysis reveals that the relative error on evapotranspiration at satellite overpass time is at least 27%. 相似文献