共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了主元和线性判别的集成分析算法以实施模拟故障数据的特征提取过程和方法。该集成分析方法首先对模拟故障数据进行主元分析,然后在主元变换空间实行线性判别分析,最后将所获得的最优判别特征模式应用于模式分类器进行故障诊断。仿真结果表明,所提出的方法能够充分利用线性方法的计算简便优势,增强单一主元分析或线性判别分析的特征提取性能,获取故障数据集的本质特征,简化模式分类器的结构,降低系统运行的计算成本。 相似文献
2.
主元分析法(PCA)通过提取故障样本集的主元得到降维的特征空间,利于故障特征提取;支持向量机(SVM)应用于故障诊断时具有良好分类性能;结合两者优点,提出了基于PCA特征提取和SVM相结合的模拟电路故障诊断识别新方法:对电路输出响应信号进行PCA处理,提取故障特征的主成分,然后利用多类SVM对故障模式进行分类决策,实现故障诊断;仿真实验结果表明,该方法能够实现模拟电路故障的快速检测与故障定位,具有速度快、精度高、鲁棒性好的特点。 相似文献
3.
针对模拟电路故障诊断问题,使用小波多分辨率分析的方法提取电路故障特征,以BP神经网络作为分类器,使用主元分析的方法降低特征维度,改善分类效果.仿真表明,将小波多分辨率分析的方法应用于模拟电路故障诊断是可行的和有效的. 相似文献
4.
针对传统BP神经网络在模拟电路故障诊断中存在的不足,提出遗传算法和BP神经网络相结合的遗传神经网络模拟电路故障诊断方法;充分利用遗传算法全局、并行寻优的能力对BP神经网络的学习过程进行优化,防止神经网络训练时出现收敛速度慢和陷入局部极小等缺陷;在MATLAB平台上编程实现模拟电路故障诊断的仿真实验;仿真结果表明,相对于传统的BP神经网络算法,遗传神经网络算法不仅提高了网络训练收敛速度,而且提高了模拟电路故障诊断平均正确率,为模拟电路智能化诊断提供一种新的思路。 相似文献
5.
研究模拟电路故障诊断准确性问题.电路故障与引起故障因素之间呈高度非线性,传统故障识别方法无法识别其非线性特点,导致传统故障方法的诊断精度低.为了提高电路故障诊断的精度,提出一种遗传算法优化BP神经算法的模拟电路故障诊断方法.首先对故障电路样本进行特征提取和归-化处理,然后采用遗传算法对BP神经网络参数进行优化,最后利用最优参数BP神经网络对电路故障样本进行训练和建模,获得电路故障诊断结果.在MATLAB平台上对模拟电路故障进行仿真测试,仿真结果表明,与传统模拟电路故障诊断方法相比,提高了模拟电路故障诊断精度,缩短了故障诊断时间,在模拟电路故障中有着广泛的应用前景. 相似文献
6.
7.
小波神经网络在模拟电路故障诊断中的应用 总被引:4,自引:0,他引:4
研究模拟电路优化问题,电路系统存在非线性和漂移会引起系统故障.针对BP神经网络在模拟电路故障诊断上存在的收敛速度慢、易陷入局部最小等不足,为解决上述问题,提出基于小波神经网络的模拟电路故障诊断方法.采用正弦信号仿真模拟电路,应用小波变换对模拟电路响应的采样信号进行故障特征提取,建立故障字典,利用神经网络对各种状态下的特征向量进行分类决策,实现模拟电路的故障诊断.故障诊断仿真表明,保证较高故障诊断正确率RBF网络的训练次数得到了极大地缩小,极大地提高了模拟电路故障诊断的效率,为设计提供了依据. 相似文献
8.
小波神经网络在模拟电路故障诊断中的应用 总被引:1,自引:0,他引:1
介绍了模拟电路故障诊断的神经网络方法及小波神经网络结构和原理,以一带通滤波器为例,提出了一种基于输出灵敏度分析,利用多频测试生成故障特征向量训练小波神经网络进行故障诊断的方法,仿真结果表明小波神经网作为故障分类器具有收敛速度快,诊断准确等特点。 相似文献
9.
通过分析BP神经网络和Elman神经网络的基本结构和算法,研究了基于神经网络的模拟电路故障诊断方法,并通过仿真实验对比分析了BP神经网络和Elman神经网络的诊断能力。结果表明,BP神经网络的收敛速度相对较慢、训练时间长;Elman神经网络的结构参数调整简单、训练时间短、性能稳定,更适合存在容差、非线性等问题的模拟电路故障诊断。 相似文献
10.
模拟电路故障诊断具有诊断特性复杂,故障字典建立耗时长等特性,用传统的方法很难得到最佳的诊断效果。本文采用小波神经网络对故障电路建模,基于该网络学习收敛快,对网络输入不太敏感的特点,实现故障诊断。 相似文献
11.
以进行模拟电路实时故障诊断为主要目的,对BP神经网络故障字典法进行了深入研究,针对传统BP算法收敛速度慢、易产生局部最优等不足,采用神经网络与模糊理论相结合的方法,根据模式识别原理实现模拟电路故障的实时诊断。实验结果表明:该算法在网络收敛速度和识别精度上较传统的BP算法均有明显的改善。 相似文献
12.
在尽量简化取样的条件下实现自动故障诊断,可以通过对电路输出进行傅立叶分解得到量化的信息,基于粗糙集理论构造的分类器适用于这种场合,因其具有在输入不精确、不完整信息情况下的分类能力;在傅立叶分解、数据离散化、采用RSES进行训练的基本流程中,取样点的选取,离散算法等细节对故障的识别准确率有较明显的影响;实验结果证明了粗糙集理论结合傅立叶分解诊断电子电路故障的可靠性和准确性. 相似文献
13.
主成分分析法与概率神经网络在模拟电路故障诊断中的应用 总被引:4,自引:2,他引:4
模拟电路故障的多样性使得神经网络训练样本数量增加,BP网络结构趋于复杂,训练速度降低;针对反向传播神经网络(BPNN)学习收敛速度慢、易陷入局部极小值等问题,提出了基于主成分分析(PCA)与概率神经网络(PNN)相结合的模拟电路故障诊断方法;通过主成分分析法(Principal Component Analysis)提取特征数据进行降维处理,再结合概率神经网络(Probabilistic Neural Networks)对电路故障进行分类;实例说明采用PCA和PNN结合对故障数据处理,可以大大的提高故障诊断分类的准确性。 相似文献
14.
15.
针对模拟电路的故障诊断和健康管理(PHM)的应用,提出了结合主成分分析(PCA)和极限学习机(ELM)的故障诊断方法。该方法用Sallen-Key带通滤波器来获取故障样本,并通过PCA进行故障特征提取。根据故障样本对ELM进行训练来获得故障诊断模型。实验结果表明,该实现方法识别率高、鲁棒性好,在工程实际中具有研究和应用价值。 相似文献
16.
基于小波神经网络的模拟电路故障诊断 总被引:1,自引:0,他引:1
模拟电路故障诊断具有诊断特性复杂,故障字典建立耗时长等特性,用传统的方法很难得到最佳的诊断效果。本文采用小波神经网络对故障电路建模,基于该网络学习收敛快,对网络输入不太敏感的特点,实现故障诊断。 相似文献
17.
《计算机测量与控制》2014,(3):697-699,708
针对以往故障诊断模型往往忽略故障数据中存在的大量无关和冗余信息以及故障诊断精度不高的缺点,设计了一种基于粗糙集(Rough Set,RS)和离散小波变换(Discrete Wavelet transform,DWT)一支持向量机(Support Vector Machine,SVM)的模拟电路故障诊断方法;首先,采用离散小波变换获取电路故障诊断特征向量以去除无关信息;然后通过基于RS属性出现频率的差别矩阵算法对特征向量进行属性约简以消除冗余属性;最后,建立多分类的SVM对电路进行分类以实现故障诊断,为了进一步提高故障诊断精度,采用改进免疫优化算法(Immune Optimizing Algorism,IOA)对SVM核函数的各参数进行优化;仿真实验表明,文中方法能有效实现电路的故障诊断,与其它方法相比,故障精度高达100%,是一种有效的电路诊断方法。 相似文献
18.
层次聚类LSSVM在模拟电路故障诊断中的应用 总被引:2,自引:0,他引:2
文中借鉴层次聚类的思想,采用正向训练、反向测试的方法构造了层次聚类最小二乘支持向量机,并针对容差模拟电路的故障诊断问题,在利用核主元分析法提取其故障特征的基础上,采用所构造的层次聚类最小二乘支持向量机对模拟电路的软故障进行了诊断,并与常用的1对1、1对多算法进行比较,结果表明该方法简化了分类器的结构,缩短了训练测试时间,提高了故障识别率。 相似文献
19.
基于进化神经网络的模拟电路故障诊断 总被引:2,自引:0,他引:2
基于人工神经网络的智能故障诊断系统作为人工智能技术在模拟电路故障诊断领域的应用,在实践中取得了一定的成效.但由于容差和非线性特性使得模拟电路的故障诊断趋于复杂化,以及诊断系统中神经网络的拓扑结构难以确定,因此,针对上述局限,提出了模拟电路故障诊断的进化神经网络方法;文中详细的阐述了进化神经网络的构成方式,提出了把网络的结构和权值分级进化的方法,并在两级进化的过程中使用不同的适应度函数及改进的遗传算法.举例说明诊断系统的具体实现方法,仿真结果表明,在相同的精度要求下,该算法的训练时间远小于普通的进化神经网络,对模拟电路的故障诊断有一定的实际意义. 相似文献
20.
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。 相似文献