首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetics and selectivity of supercritical carbon dioxide (SC CO2) extraction of Helichrysum italicum flowers were analyzed at pressures in the range of 10-20 MPa and temperatures of 40 °C and 60 °C (density of SC CO2 from 290 to 841 kg/m3) and also at 10 MPa and 40 °C using flowers with different moisture contents (10.5% and 28.4%). Increased moisture content of H. italicum flowers resulted in enchased solubility of solute enabling decrease of SC CO2 consumption necessary for achieving desired extraction yield. The most abundant compounds in the supercritical extracts are sesquiterpenes and waxes while monoterpenes and sesquiterpenes are the main constituents of essential oil obtained by hydrodistillation. The optimal set of working parameters with respect to extraction yield, SC CO2 consumption and chemical composition of extract were defined related to moisture content of raw material and SC CO2 density.  相似文献   

2.
Microcellular foaming of amorphous rigid polymers, polymethylmethacrylate (PMMA) and polystyrene (PS) was studied in supercritical CO2 (ScCO2) in the presence of several types of additives, such as triblock (styrene-co-butadiene-co-methylmethacrylate, SBM and methylmethacrylate-co-butylacrylate-co-methylmethacrylate, MAM) terpolymers. This work is focused in the two-step foaming process, in which the sample is previously saturated under ScCO2 being expanded in a second step out of the CO2 vessel (e.g. in a hot oil bath) where foaming is initiated by the change of temperature near or above the glass transition temperature of the glass/polymer glassy system. Samples were saturated under high pressures of CO2 (300 bar), at room temperature, for 16 h, followed by a quenching at a high depressurization rate (150 bar/min). In the last step, foaming was carried out at different temperatures (from 80 °C to 140 °C) and different foaming times (from 10 s to 120 s). It was found that cellular structures were controlled selecting either the additive type or the foaming conditions. Cell sizes are ranging from 0.3 μm to 300 μm, and densities from 0.50 g/cm3 to 1 g/cm3 depending on the polymers considered.  相似文献   

3.
The effects of supercritical carbondioxide extraction was investigated to compare previously validated extraction methods on total alkannin yield with Alkanna tinctoria collected form Antalya, Turkey. A two-step process was used; extraction of alkannin derivatives with supercritical CO2 followed by alkaline hydrolysis of alkannin derivatives. A Box-Behnken exprerimental design was used to evaluate the effect of three variables, pressure (50-350 bar), temperature (30-80 °C) and CO2 flow (5-20 g min−1) at 1:30 ratio of alkanna root:CO2 amount. Response surface analysis revealed that the data were adequately fitted to a second-order polynomial model with R2 0.9665 and the most effective variable was pressure (P ≤ 0.05). Optimum conditions were determined as 80 °C, 175 bar, 5 g min−1 CO2 flow yielding the highest total alkannins (1.47%) which was higher than conventional hexane extraction (1.24%) providing a solvent-free alternative for industrial production.  相似文献   

4.
Interfacial tension (IFT) of fish oil triglycerides (TG) and fatty acid ethyl esters (FAEE) in contact with carbon dioxide (CO2) was measured according to the pendant drop method at 40, 55 and 70 °C and pressures up to 25 MPa. The IFT of both TG and FAEE decreased substantially with CO2 pressure. The IFT of FAEE vanished at elevated pressures, whereas that of TG decreased to a fairly constant level of about 2 mN/m. The IFT was correlated using a model taking into account the density, pressure and temperature of CO2, thereby facilitating the calculation of the ideal pendant drop volume as well as the surface excess concentration of CO2. In the pressure range studied, the pendant drop volume for FAEE decreased with pressure, whereas for TG it increased at elevated presssures due to the predominant effect of buoyancy. Furthermore, the change in IFT over time was determined at 55 °C for TG in contact with CO2 at pressures up to 11.4 MPa showing a decrease of IFT over time at low pressures, whereas at higher pressures it remained nearly constant. IFT influences drop formation as well as the disintegration of falling films thereby affecting the performance of separation processes.  相似文献   

5.
Supercritical carbon dioxide was used for partially selective extraction of triacetin from a mixture of triacetin, diacetin, and monoacetin with a molar ratio of 1:2:1. The extraction was carried out in two stages. In the first stage, a central composite design was used to optimize the four variables of pressure, temperature, liquid CO2 flow rate, and extraction time at three levels using a semi-continuous, supercritical carbon dioxide extraction setup. The composition of the extract under the predicted optimum conditions (i.e., 109 bar, 56 °C, 0.86 mL min−1, and 61 min) was about 69% triacetin accompanied by only 30% diacetin and no detectable monoacetin. In the second stage, the effect of the two factors, pressure (100, 109, and 140 bar) and liquid CO2 flow rates of 0.86 and 1.5 mL min−1 measured at average laboratory temperature (27 °C) and pressure (0.89 bar), were studied using a continuous, supercritical carbon dioxide fractionation setup equipped with a glass-bead packed column kept under a thermal gradient of 56-70 °C. The experimental design was organized as a 3 × 2 general factorial design. Under the best conditions (i.e., 140 bar and 1.5 mL min−1), the extraction yield of triacetin and diacetin were 41.8 and 3.0%, respectively, without any detectable monoacetin as verified by GC-FID.  相似文献   

6.
During enzymatic reactions carried out in supercritical CO2 (SCCO2) media, CO2 can expand the liquid reactant mixture, especially lipid-type substances, due to pressure increase and dissolution of CO2, causing viscosity reduction, and improvement of the diffusion of reactants and products. For better understanding of the transesterification reaction of canola oil and canola stearin in SCCO2 media, the viscosity of canola oil at 40, 50, 65, and 75 °C and its blend with canola stearin (30 wt%) at 65 °C in equilibrium with high pressure CO2 was measured up to 12.4 MPa using a rotational rheometer equipped with a high pressure cell. The solubility of CO2 in canola oil at 40 and 65 °C and its blend with canola stearin at 65 °C was also determined at pressures of up to 20 MPa using a high pressure view cell. The viscosity of canola oil at 40, 50, 65, and 75 °C and its blend with canola stearin at 65 °C decreased exponentially to 87.2, 84.7, 74.8, 66.2, and 74.2% of its value at atmospheric pressure, respectively, with pressure increase up to 12.4 MPa. The viscosity of the samples decreased with an increase in temperature, but the effect of temperature diminished above 10 MPa. The viscosities of CO2-expanded canola oil and its blend with canola stearin at 65 °C were similar up to 12.4 MPa. The samples exhibited shear-thickening behavior as the flow behavior index reached almost 1.2 at elevated pressures. The mass fraction of CO2 in canola oil at 40 and 65 °C and its blend with canola stearin at 65 °C reached 24 and 21% at 20 MPa, respectively. The Grunberg and Nissan model was used to correlate the viscosity of CO2-expanded lipid samples.  相似文献   

7.
In this study, pumpkin seeds, called as “Ürgüp Sivrisi” and grown in Cappadocia region, were used as plant materials because of high aroma contents. In the supercritical fluid extraction of pumpkin seed oil, the effect of main process parameters as the particle size (250-2360 μm), the volumetric flow rate of supercritical solvent (0.06-0.30 L/h), the operating pressure (20-50 MPa), the operating temperature (40-70 °C), the type of entrainer (ethanol and n-hexane) and those concentrations (0-10 vol.%) on the extraction yield, the oil solubility and the initial extraction rate were investigated. A cross-over effect for the extraction of pumpkin seed oil using supercritical CO2 was determined at the operating pressure of 20-30 MPa. The maximum extraction yield obtained with entrainer free was reached 0.50 g oil/g dry seed at 600-1180 μm, 0.12 L/h, 50 MPa and 70 °C for the operation time of 5 h. The maximum extraction yield obtained with ethanol as an entrainer in the experiments was reached 0.54 g oil/g dry seed at the conditions of 600-1180 μm, 0.12 L/h, 30 MPa, 40 °C and 8 vol.% for the operating time of 2 h. The oil compositions were determined by gas chromatography analysis and the results showed that the compositions of pumpkin seed oil which were obtained by means of organic solvent extraction and supercritical fluid extraction were similar. The average oil compositions determined as 9.3 (±0.43)% palmitic acid, 7.5 (±0.6)% stearic acid, 32.3 (±0.6)% oleic acid, 48.1 (±0.6)% linoleic acid and 0.7 (±0.3)% linolenic acid. The morphological changes in the seeds were determined by the scanning electron microscopy analysis.  相似文献   

8.
Due to their high surface area, low density, open pore structure and excellent insulation properties aerogels are intensively investigated since the past decades for a diverse range of applications. The current methods of silica aerogel production by supercritical extraction produce monolithic aerogels, where the sol is aged in molds and dried by extraction with supercritical CO2. Aerogels in the form of spherical microparticles would be beneficial for many applications, for instance, drug delivery for respiratory route; or as insulating materials. However, because of aerogel's mechanical properties, it is difficult, rather impossible, to obtain spherical microparticles by milling or crushing of the monolithic aerogels. This work presents a new method to produce biocompatible spherical aerogel microparticles using an emulsion technique (in situ production) followed by supercritical extraction of the resulted dispersion (gel-oil). Water in oil emulsion was produced by mixing the sol (dispersed phase) with a vegetable oil (continuous phase) followed by the gelation of the dispersed phase. The size distribution of the final gel particles was found to be influenced by agitation, surfactant concentration and sol:oil volume ratios. The gel-oil dispersion was subsequently extracted with supercritical CO2, Silica aerogel spherical microparticles with a surface area of 1100 m2g−1, pore volume of 3.5 cm3/g and different mean particle diameters ranging from 200 μm to a few millimeters were produced using the presented method.  相似文献   

9.
In this work, supercritical CO2 extraction has been carried out on a traditional Chinese herb of Baizhu under pressure of 15-45 MPa, temperature of 40-60 °C, mean powder size of 0.167-0.675 mm, and extraction time of up to 180 min. The maximum extraction yield obtained in 5 h is about 6.76 × 10−2 g per gram raw materials at 60 °C and 45 MPa. The extraction process is correlated by means of five different mathematical models. The evaluation of these models against experimental data shows that among these models the Sovová model performs the best with an overall average absolute relative deviation of 1.62%, followed by Crank and Naik models, finally the Barton and Martínez models. From the Sovová model, the mass transfer coefficient in solid or fluid are obtained and they are varying in the ranges of 4.02-6.14 × 10−8 m/s and 0.88-2.87 × 10−9 m/s, respectively. These results suggest that solute diffusion in solid matrices and solute mass transfer in fluid are both important in affecting the supercritical CO2 extraction process of Baizhu.  相似文献   

10.
Microcellular foaming of commodity amorphous polymers, poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) was studied in supercritical CO2 via a batch one-step process in the presence of block copolymers able to change their foaming behaviour and therefore the porous structures. Triblock (styrene-co-butadiene-co-methylmethacrylate SBM, methylmethacrylate-co-butylacrylate-co-methylmethacrylate MAM) terpolymers were blended to PS or PMMA by extrusion. They showed advantages compared to classical PS-PMMA polymer blends in terms of cell size control and reduction of cell size. Foaming is carried out on bulk injection molded samples which were saturated under high pressures of CO2 (300 bars) at different temperatures (25° C to 80 °C) and different depressurization rates (pressure drop rates from 150 bar/min to 12 bar/min). Very distinct cellular structures and densities were controlled by varying either the copolymer type or the foaming conditions (T,P). Cell sizes ranged from 0.2 μm to 200 μm, and densities from 0.30 g/cm3 to 1 g/cm3 in the polymers considered. Particularly, when triblock copolymers were able to self organize (nanostructuring) in a polymer matrix, they became phase separated at a nanometer level, presenting nanostructured polymers matrixes. To conclude the study, a possible nanostructuring mechanism is suggested based on the interplay between rubbery and highly CO2-philic blocks/rigid and less CO2-philic blocks. It is demonstrated that block copolymer additives are a good pathway towards micro and ultra microcellular supercritical CO2 foaming of amorphous polymers.  相似文献   

11.
A Jada  A Ait Chaou 《Fuel》2002,81(13):1669-1678
In the power transformer, the presence of polar or charged species in the insulating oil can cause failure and electric discharges. Solid substrates such as silica can be used to extract the polar species and to refine the oil in order to prevent future failure in the power transformer. However, the use of silica for petroleum oil separation and refining will depend on the silica characteristics such as surface charge, surface composition, specific surface area and particle size.Various pyrogenic silicas having various specific surface areas (49-200 m2 g−1) and particle sizes (207-500 nm) were used to extract the polar fractions from the neat transformer insulating oils (a new, NO, and used, UO2, oils). The oil covered silica samples were investigated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the range 4000-600 cm−1. The bare silica surfaces present two main hydroxyl components, a sharper peak at 3745 cm−1, I3745, due to isolated silanols and a second broad, which spreads over 3745-3000 cm−1, I3745-3000, due to H-bonded silanols. The relative intensities of the two components, I3745/I3745-3000, varied for the bare and the oil covered silicas depending on the solid surface characteristics. The adsorption of the NO polar fraction onto silica leads to strong reduction in intensity of the sharper peak in favour of the broad one. However, the adsorption of the UO2 polar fraction onto silica leads in all cases to the decrease in the intensity of the both silica OH components. Further, the UO2 adsorption on the silica leads to the apparition of a broad peak at low frequency in the region 3250-3300 cm−1 which, is due to the associated phenolic groups of UO2 oil polar fraction. The analysis of the DRIFT spectra for various samples indicates that the oil polar fraction resembles to asphaltenes compounds.The microelectrophoresis method used to investigate the surface charge at the water/oil polar fraction covered silica interface, indicates negatively charged particles. Further, the negative charge increased with the pH, as resulting from the increase of the ionisation and/or the amount of the oil polar carboxylic and phenolic groups. The oil polar fraction, i.e. the asphaltene components, in contact with both the silica surface and water at high pH values rearrange, due to their amphiphilic character.Finally, the use of the silica substrates seems to be suited to extract and analyse polar species present in petroleum oil. A correlation is found between the nature of the oil, its functionalities, and the magnitude of its zeta potential value at the water/oil covered silica interface.  相似文献   

12.
Satoshi Yoda  Daniel Bratton 《Polymer》2004,45(23):7839-7843
The direct synthesis of poly(l-lactic acid) (PLLA) from an l-lactic acid oligomer has been performed in supercritical carbon dioxide (scCO2) using an esterification promoting agent, dicyclohexyldimethylcarbodiimide (DCC), and 4-dimethylaminopyridine (DMAP) as a catalyst. PLLA within Mn of 13,500 g/mol was synthesised in 90% yield at 3500 psi and 80 °C after 24 h. The molecular weight distribution of the products was narrower than PLLA prepared with melt-solid phase polymerisation under conventional conditions. Both DCC and DMAP showed high solubility in scCO2 (DCC: 7.6 wt% (1.63×10−2 mol/mol CO2) at 80 °C, 3385 psi, DMAP: 4.5 wt% (1.62×10−2mol/mol CO2) at 80 °C, 3386 psi) and supercritical fluid extraction was found to be effective at removing excess DMAP and DCC after the polymerisation was complete. We show that DCC and DMAP are effective esterification promoting reagents with further applications for condensation polymerisations in scCO2.  相似文献   

13.
Saccharomyces cerevisiae is one of the most studied and industrially exploited yeast. It is a non-oleaginous yeast whose lipids are mainly phospholipids. In this work, the extraction of yeast lipids by supercritical carbon dioxide (SCCO2) and ethanol as a co-solvent was studied. In particular our attention was focused on the selectivity toward triglycerides, and in a subsequent extraction of the phospholipids present in the yeast. Indeed CO2 is a non-polar solvent and is not an efficient solvent for the extraction of phospholipids. However, SCCO2 can be used to extract neutral lipids, as triglycerides, and the addition of polar co-solvents like ethanol, at different compositions, allows a more efficient extraction of triglycerides, and also an extraction-fractionation of phospholipids. In this work SCCO2 extractions of a specific membrane complex of S. cerevisiae, obtained from an industrial provider, were carried out at 20 MPa and 40 °C, using ethanol as a co-solvent (9%, w/w). It was shown that different pretreatments are necessary to obtain good extraction yields and have a great impact on the extraction. The kinetic of the extractions were successfully modeled using Sovova's model. From the fitting of the main parameters of the model it was possible to compare the effects of the pretreatments over the yeast material, and to better understand the extraction process. Among the seven tested pretreatments the more appropriate was found to be an acid hydrolysis followed by a methanol maceration.  相似文献   

14.
The supercritical carbon dioxide (SFE) extraction of Dalmatian sage (Salvia officinalis L.) was investigated and compared to extraction performed by Soxhlet ethanol-water (70:30) mixture extraction (SE) and hydrodistillation (HD). The supercritical extraction allowed isolation of wide spectrum of phytochemicals, while other applied methods were limited to either volatiles (HD) or high molecular compounds isolation (SE). The kinetics of the supercritical extraction and fractionation within the pressure range of 10-30 MPa at 50 °C were also analyzed as well as the chemical compositions of total extract and partial or differential fractions isolated at different CO2 consumption. Volatile fraction could be isolated at low pressure and low CO2 consumption, whereby the pressures between 10 and 15 MPa followed by increased CO2 consumption were favourable for obtaining desired selectivity of diterpenes which contain compounds with expressed antioxidative characteristics.  相似文献   

15.
In this work we investigated the solid-state supercritical CO2 (scCO2) foaming of poly(?-caprolactone) (PCL), a semi-crystalline, biodegradable polyester, and PCL loaded with 5 wt% of hydroxyapatite (HA) nano-particles.In order to investigate the effect of the thermal history and eventual residue of the crystalline phase on the pore structure of the foams, samples were subjected to three different cooling protocols from the melt, and subsequently foamed by using scCO2 as blowing agent. The foaming process was performed in the 37-40 °C temperature range, melting point of PCL being 60 °C. The saturation pressure, in the range from 10 to 20 MPa, and the foaming time, from 2 to 900 s, were modulated in order to control the final morphology, porosity and pore structure of the foams and, possibly, to amplify the original differences among the different samples.The results of this study demonstrated that by the scCO2 foaming it was possible to produce PCL and PCL-HA foams with homogeneous morphologies at relatively low temperatures. Furthermore, by the appropriate combination of materials properties and foaming parameters, we prepared foams with porosities in the 55-85% range, mean pore size from 40 to 250 μm and pore density from 105 to 108 pore/cm3. Finally, we also proposed a two-step depressurization foaming process for the design of bi-modal and highly interconnected foams suitable as scaffolds for tissue engineering.  相似文献   

16.
The objective of the work was to optimize the extraction of wormwood oil by supercritical fluid extraction (SFE) of growth-controlled plant material. Different extraction conditions, two growth techniques and various crops were tested and the evolution of the extracted oil composition was screened chromatographically. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, six CO2 densities ranging from 285.0 kg/m3 to 819.5 kg/m3 were studied in the range of 9.0-18.0 MPa and 40-50 °C. A systematic study was carried out with plant material from 2005, while SFE of 2006, 2008 and aeroponically grown crops was performed for comparative purposes. The effect of ethanol as a modifier of the supercritical fluid extraction was also studied. The major compounds found in the SFE extracts as well as in the HD essential oils were Z-epoxyocimene, chrysanthenol and chrysanthenyl acetate. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   

17.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil rich in omega-3 fatty acids (FAs) from chia seeds, and the physicochemical properties of the oil were determined. A central composite rotatable design was used to analyze the impact of temperature (40 °C, 60 °C and 80 °C), pressure (250 bar, 350 bar and 450 bar) and time (60 min, 150 min and 240 min) on oil extraction yield, and a response surface methodology (RSM) was applied. The extraction time and pressure had the greatest effects on oil. The highest oil yield was 92.8% after 300 min of extraction time at 450 bar. The FA composition varied depending on operating conditions but had a high content of α-linolenic acid (44.4-63.4%) and linoleic acid (19.6-35.0%). The rheological evaluation of the oils indicated a Newtonian behavior. The viscosity of the oil decreased with the increase in temperature following an Arrhenius-type relationship.  相似文献   

18.
Continuous production of fatty acid methyl esters (FAMEs) from corn oil was studied in a supercritical carbon dioxide (SC-CO2) bioreactor using immobilized lipase (Novozym 435) as catalyst. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the reaction conditions: pressure (11-35 MPa), temperature (35-63 °C), substrate mole ratio (methanol:corn oil 1-9) and CO2 flow rate (0.4-3.6 L/min, measured at ambient conditions). Increasing the substrate mole ratio increased the FAME content, whereas increasing pressure decreased the FAME content. Higher conversions were obtained at higher and lower temperatures and CO2 flow rates compared to moderate temperatures and CO2 flow rates. The optimal reaction conditions generated from the predictive model for the maximum FAME content were 19.4 MPa, 62.9 °C, 7.03 substrate mole ratio and 0.72 L/min CO2 flow rate. The optimum predicted FAME content was 98.9% compared to an actual value of 93.3 ± 1.1% (w/w). The SC-CO2 bioreactor packed with immobilized lipase shows great potential for biodiesel production.  相似文献   

19.
In this study, the essential oil of aerial parts of a species of a plant called Ferulago Angulata was extracted by CO2 to optimize the results of the supercritical extraction process and then the essence was analyzed by the method of GC/MS. This extraction has been performed using Taguchi testing method and choosing L16 array in a laboratorial pilot under the following: pressure (90, 120, 140, and 190 bar), temperature (35, 40, 45, and 55 °C), the average particles size (250, 500, 710, and 2000 μm), flow rate (3, 5, 7, and 12 ml/s) and dynamic time (25, 50, 70, and 120 min). Then optimizing process was done to achieve maximum yield extraction. The optimizing conditions are as follows: 190 bar, 35 °C, 710 μm, 12 ml/s, supercritical flow rate 12 ml/s and the final yield is 0.853%. The total yield of supercritical extraction in the mentioned conditions as well as empirically is 0.97% or about 1%. This is the first report announcing optimization of the operation of supercritical extraction of Ferulago Angulata in a laboratorial condition. In the last report of the same authors, which was also for the first time, the chemical components of this plant essence were identified through supercritical extraction and then were compared with the extraction components of other traditional methods.  相似文献   

20.
Chia (Salvia Hispanic, L.) is a crop that was used as food, medicine and paints by the Aztec Indians in Mexico before 1492, and now has a promissory future in several countries. Chia seeds oil is rich in polyunsaturated fatty acids, particularly omega-3 linolenic acid (54-67%) and omega-6 linoleic acid (12-21%) which pose great benefits for human and animal health.The oil extraction from Chia seeds using supercritical CO2 seems to be a good alternative because it operates at low temperature with good mass-transfer rates and with no solvent residual in the final product.The objective of this work is to evaluate the extraction yield of oil from chia seeds and the concentration of omega-3 and omega-6 acids using supercritical extraction with CO2 at three pressures: 136, 272, and 408 bar, and three temperatures: 40, 60, and 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号