首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supercritical carbon dioxide (SFE) extraction of Dalmatian sage (Salvia officinalis L.) was investigated and compared to extraction performed by Soxhlet ethanol-water (70:30) mixture extraction (SE) and hydrodistillation (HD). The supercritical extraction allowed isolation of wide spectrum of phytochemicals, while other applied methods were limited to either volatiles (HD) or high molecular compounds isolation (SE). The kinetics of the supercritical extraction and fractionation within the pressure range of 10-30 MPa at 50 °C were also analyzed as well as the chemical compositions of total extract and partial or differential fractions isolated at different CO2 consumption. Volatile fraction could be isolated at low pressure and low CO2 consumption, whereby the pressures between 10 and 15 MPa followed by increased CO2 consumption were favourable for obtaining desired selectivity of diterpenes which contain compounds with expressed antioxidative characteristics.  相似文献   

2.
Kinetics and selectivity of supercritical carbon dioxide (SC CO2) extraction of Helichrysum italicum flowers were analyzed at pressures in the range of 10-20 MPa and temperatures of 40 °C and 60 °C (density of SC CO2 from 290 to 841 kg/m3) and also at 10 MPa and 40 °C using flowers with different moisture contents (10.5% and 28.4%). Increased moisture content of H. italicum flowers resulted in enchased solubility of solute enabling decrease of SC CO2 consumption necessary for achieving desired extraction yield. The most abundant compounds in the supercritical extracts are sesquiterpenes and waxes while monoterpenes and sesquiterpenes are the main constituents of essential oil obtained by hydrodistillation. The optimal set of working parameters with respect to extraction yield, SC CO2 consumption and chemical composition of extract were defined related to moisture content of raw material and SC CO2 density.  相似文献   

3.
Many scale-up criteria for supercritical fluid extraction (SFE) can be found in literature. However, the studies are often divergent and inconclusive; therefore, more studies on this field are needed. The objective of the present work was to study the scale-up of SFE process focusing application to Brazilian raw materials. A laboratory scale equipment (290 mL extraction vessel) and a pilot scale equipment (5.15 L extraction vessel) were used to study scale-up of SFE for clove and sugarcane residue. The scale-up criterion adopted consisted in maintaining solvent mass to feed mass ratio constant. The criterion was successfully used for a 15-fold scale-up of overall extraction curves for both raw materials studied; yields in pilot scale were slightly higher than in laboratory scale. The criterion studied allows a rapid and simple scale-up procedure, which can be very useful for the purpose of developing SFE technology at industrial scale in developing countries where such technology is still not available at industrial level.  相似文献   

4.
Propolis is a natural product used for centuries by human kind, due to several evidenced biological activities: antioxidant, antimicrobial, anti-inflammatory, antitumor and anti-HIV. Extracts from propolis, used in food, pharmaceutical and cosmetic industries, present quality and composition related to the extraction method applied. Natural compounds with biological activity can be obtained by conventional techniques, such as Soxhlet and Maceration, or by alternative methods such as supercritical fluid extraction (SFE). Thus, the aim of this work was to compare propolis extraction yields obtained by different procedures, for instance, SFE in one stage, with CO2 and CO2 plus co-solvent, and SFE in two stages, as well as Soxhlet and Maceration as low pressure extraction methods using ethanol, ethyl acetate, chloroform, n-hexane, water and mixtures of water/ethanol. The operational conditions for SFE in one stage with pure CO2 were: 30, 40 and 50 °C and from 100 to 250 bar. The SFE with co-solvent was performed at 150 bar and 40 °C and ethanol concentrations of 2, 5 and 7% (w/w). The highest yield was obtained by chloroform Soxhlet extraction (73 ± 2%, w/w) whereas for SFE the maximum yield was 24.8 ± 0.9%, using 5% ethanol as co-solvent. For SFE in two stages, 100 and 150 bar were used in the first stage while 250 and 300 bar were applied in the second stage, at 40 °C. The yields were 8.4 ± 0.7 (150 bar) and 5.1 ± 0.7 (250 bar), for stages 1 and 2, respectively. The chemical composition of the propolis material was determined by HPLC analysis. The experimental data were correlated using four models based on differential mass balance equations: (1) the Sovová’s model; (2) the logistic model (3) the diffusion model and (4) the simple single plate model (SSP). The logistic model provided the best adjustment for propolis SFE curves.  相似文献   

5.
There is a growing interest in the use of d-pinitol (d-3-O-methyl-chiro-inositol) as a food supplement, thus the use of green and efficient process, such as the supercritical fluid extraction (SFE), to isolate d-pinitol from vegetable raw materials is also an interesting area of research and development. The objective of this work was to study the influence of operating conditions on the SFE of d-pinitol from carob pods. The crucial parameters in SFE, like temperature, pressure, CO2 flow rate and duration of the process, have been studied. Finally, Naik and Barton models have successfully tested in order to fit the experimental extraction curves.  相似文献   

6.
The objective of the work was to optimize the extraction of Persea indica L. bioactive compounds by means of supercritical fluid extraction (SFE) and analyze their insecticidal effects. P. indica L. is one of the dominant species of the Canarian laurel forest, a relict of the Tertiary flora. Different extraction conditions (pressure, plant material particle size, temperature, CO2 flow) and the influence of entrainer were tested and the evolution of the extracted compounds was screened by HPLC-MS. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, four CO2 densities ranging from 628.61 kg/m3 to 839.81 kg/m3 were studied in the range of 10.0-20.0 MPa and 40-50 °C. The extracts contained insecticidal ryanodanes of great interest, previously described as insecticidal components of P. indica. The insecticidal antifeedant activity of selected extracts was inspected. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   

7.
Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L.) leaves: a one-step process using water, ethanol or supercritical CO2 as solvents, and a two-step process using supercritical CO2 followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO2. With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the β-carotene bleaching method, presented high antioxidant activities.  相似文献   

8.
This study investigates supercritical carbon dioxide (SC-CO2) extraction of triglycerides from powdered Jatropha curcas kernels followed by subcritical hydrolysis and supercritical methylation of the extracted SC-CO2 oil to obtain a 98.5% purity level of biodiesel. Effects of the reaction temperature, the reaction time and the solvent to feed ratio on free fatty acids in the hydrolyzed oil and fatty acid esters in the methylated oil via two experimental designs were also examined. Supercritical methylation of the hydrolyzed oil following subcritical hydrolysis of the SC-CO2 extract yielded a methylation reaction conversion of 99%. The activation energy of hydrolysis and trans-esterified reactions were 68.5 and 45.2 kJ/mole, respectively. This study demonstrates that supercritical methylation preceded by subcritical hydrolysis of the SC-CO2 oil is a feasible two-step process in producing biodiesel from powdered Jatropha kernels.  相似文献   

9.
In this work we designed and built a homemade supercritical fluid extraction (HM-SFE) system, in which pure CO2 and CO2 with co-solvents were used. The HM-SFE was made by means of thermal dilatation-contraction (TDC). This HM-SFE system was used for obtaining guava (Psidium guajava L.) seed oil, using supercritical CO2 adding ethanol as co-solvent (CO2 SC/EtOH), extractions were performed at 313 K and different pressures (10, 20 and 30 MPa), each one in four stages of 30 min, the extract with higher yield was subjected to transesterification and high-resolution gas chromatography (HRGC) analysis. The highest extraction yield was obtained at 30 MPa (17.30% w/w), this yield was higher than one observed in a previous work using SC-CO2, and near to the one obtained by Soxhlet extraction (20.2% w/w). HRGC enabled the identification of components of the derivatized extract as methyl esters of palmitic, oleic, linoleic, and stearic fatty acids. The results obtained with HM-SFE system was compared with a commercial SFE system, obtained very similar results. In this work was possible to construct a low cost and simple manner HM-SFE system which was employed for obtaining guava seed oil, using CO2 SC/EtOH.  相似文献   

10.
Supercritical fluid chromatography (SFC) was employed to fractionate thyme (Thymus vulgaris L.) extracts, which were obtained by supercritical carbon dioxide extraction of thyme leaves. First, different supercritical extracts were produced at 313 K and at different pressures (15, 30 and 40 MPa). Thymol, a monocyclic terpenoid with recognized antiseptic, analgesic and anti-inflammatory properties, was identified and quantified in the different samples by GC-MS. Then, the supercritical extracts were fractionated by semi-preparative SFC, and different conditions such as pressure, temperature and amount of cosolvent (ethanol) employed were studied. Around a two fold increase of thymol was achieved at 15 MPa, 50 °C and 3% ethanol cosolvent, recovering 97% of the monocyclic terpenoid extracted.  相似文献   

11.
Supercritical fluid carbon dioxide (SF-CO2) extraction (SFE) of flavonoids from Maydis stigma and its nitrite-scavenging ability were investigated. The effects of extraction time, particle size and co-solvent composition in terms of water content in ethanol were first optimized. Then, a Box-Behnken design combined with response surface methodology (RSM) was employed to study the effects of three independent variables (temperature, pressure and co-solvent amount) on the extraction yield of flavonoids. A maximal extraction yield of flavonoids of approximately 4.24 mg/g of M. stigma by SFE was obtained under optimal conditions (a temperature of 50.88 °C, a pressure of 41.80 MPa, a co-solvent amount of 2.488 mL/g and an extraction time of 120 min with 0.4-mm particle sizes and 20% aqueous ethanol as the co-solvent). Furthermore, the nitrite-scavenging ability of the flavonoid-enriched SFE extracts was assessed using the Griess reagent. The flavonoid-enriched SFE extracts exhibited the highest scavenging ability on nitrite (88.1 ± 3.04%) at the concentration of 500 μg/mL and at pH 3.0. The nitrite-scavenging ability of the extracts appeared to be concentration dependent but negatively correlated with the pH.  相似文献   

12.
Supercritical fluid extraction is an interesting alternative for the fractionation of essential oils, in order to obtain concentrates or compounds of interest. This technique requires information about the distribution of the components of the mixture between the phases present at different conditions of pressure, temperature and composition. In this work equilibrium information of three bioactive essential oils (Salvia officinalis, Mentha piperita and Tagetes minuta oil) with near-critical and supercritical carbon dioxide is measured using a dynamic apparatus in the range of 313-323 K and 60-120 bar. The distribution of monoterpenes, oxygenated terpenes and sesquiterpenes in the extract phase is determined by gas chromatography in order to explore the best operating conditions for the separation of the fractions or compounds with higher biocidal activity. Predictive calculations are performed using the group contribution equation of state (GC-EOS) and compared with the experimental data.  相似文献   

13.
This study investigated co-solvent modified supercritical carbon dioxide extraction of lipids and carotenoids from the microalgal species of Nannochloropsis oculata. Supercritical carbon dioxide (SCCO2) anti-solvent precipitation of carotenoids from the extracts following purification of Zeaxanthin was also examined. Continuous modification by ethanol of supercritical carbon dioxide extractions showed that the addition ratio was important for extraction efficiency of lipids and carotenoids. SCCO2 extraction at 350 bar, 323 K and 16.7 wt% of ethanol addition yielded 239.7 mg of triglycerides and 7.61 mg of carotenoids per gram extract with a total yield of 15.5%. SCCO2 anti-solvent experiments showed that the content of Zeaxanthin in the precipitate was greater than that in the fraction of normal phase column chromatography. The purest Zeaxanthin (93.8%) was then successfully isolated from the purified fraction by using a reverse-phase HPLC column chromatography. Rat macrophages treated by ultra-sonicated water extracts of the SCCO2 defatted algae showed a positive phagocytotic activity.  相似文献   

14.
Brazilian Ginseng extracts of two species, Pfaffia paniculata and Pfaffia glomerata, were obtained by supercritical fluid extraction (SFE) with CO2 and by low-pressure solvent extraction (LPSE) with methanol, hexane and ethanol. The SFE assays were conducted at pressures of 100, 200 and 300 bar, and temperatures of 30 and 50 °C. The qualitative chemical compositions of the extracts were determined by thin layer chromatography (TLC). One of the active principles of interest from P. glomerata extract, β-ecdysone, was identified and quantified by HPLC. The antioxidant activities of Brazilian Ginseng extracts were determined by the coupled reaction of linolenic acid and β-carotene. For P. paniculata, the highest SFE yield was obtained at 200 bar/50 °C (0.22%, dry basis—d.b.), while the best extraction condition for P. glomerata was obtained at 200 bar/30 °C (0.18%, d.b.). The higher extract yields obtained by LPSE were 2.0% and 5.8% (w/w, d.b.) for P. paniculata and P. glomerata, respectively, both obtained with methanol as extraction solvent. From the overall extraction curve of P. glomerata, it was possible to obtain the kinetic parameters of extraction; the duration of the CER (constant extraction rate) period was determined as 134 min. The TLC plates showed the possible presence of flavonoids in the ethanolic extract for both Pfaffia species. The antioxidant activity analysis detected that LPSE extracts had higher activity than SFE extracts.  相似文献   

15.
Leaves and flowering tops of thyme (Thymus vulgaris L.) were extracted with ethyl alcohol and supercritical carbon dioxide. Antioxidant activity was measured in sunflower oil at 0.3, 0.6 and 1% concentrations of extracts by oven test and Rancimat method. The activities of extracts were compared to those of butylated hydroxytoluene at 0.01 and 0.1% level. The ethanolic extract showed a slightly higher antioxidative effect than that obtained by supercritical fluid extraction. The effectiveness of both extracts added at 0.6% level were equal to that of 0.1% of butylated hydroxytoluene.  相似文献   

16.
In the present study, a mathematical modeling for extraction of oil from clove buds using supercritical carbon dioxide was performed. Mass transfer is based on local equilibrium between solvent and solid. The model was solved numerically, and model estimation was validated using experimental data. For optimization, the clove oil equilibrium constant between solid and supercritical phase was determined by a theoretical method using fugacity concept, consequently the genetic algorithm for obtaining optimal operational conditions was used. The optimal conditions which obtained the highest amount of clove oil were pressure of 10 MPa and temperature of 304.2 K.  相似文献   

17.
This study investigated experimental equilibrium solubilities of Jatropha curcas and Aquiliaria crassna oils dissolved in supercritical carbon dioxide at temperatures of 318-338 K and pressures of 20, 25, 30, 35 MPa. The highest solubility of J. curcas and A. crassna oil were 29.8 and 28.4 mg L−1, respectively, at 338 K and 35 MPa. The oil solubilities and the concentration of triglycerides both increased with increasing temperature and pressure. Triglyceride molecules surrounded by carbon dioxide molecules may be proposed since solubilities increased with the flux of supercritical carbon dioxide. The solubility of these two oils linearly increased with the density of supercritical carbon dioxide. Experimental data of the oil solubility were successfully correlated by the Chrastil equation.  相似文献   

18.
Abajeru (Chrysobalanus icaco) is a plant that has hypoglycemic properties and is often used in Brazilian popular medicine. In order to identify the flavoring and hypoglycemic substances present in this plant, this work has an objective for the extraction of the essential oil presented in the leaves of abajeru using the supercritical fluid extraction (SFE). The supercritical solvent used is CO2, because of its moderate critical temperature and pressure, atoxicity, low cost and volatility. The experiments were conducted using dried leaves in an apparatus containing a high-pressure pump, a stainless steel extractor of 42 mL of volume and a micrometric valve for sampling. Different operational conditions were tested, varying mainly the temperature (313.15-353.15 K) and the pressure (10.5-20 kPa) in order to investigate the efficiency of the process. The results showed that the best operational condition was at 20 kPa and 353.15 K. To compare the supercritical carbon dioxide results, the essential oil was also extracted by hydrodistillation and soxhlet, using ethanol as solvent. The chromatographic analysis showed that the different technologies studied extracted the same classes of compounds but the SFE obtained the extract with potential hypoglycemic activity with the presence of lupenol.  相似文献   

19.
The extraction of ferulic acid, a pharmacologically active ingredient from the root of Ligusticum chuanxiong, with ultrasonic extraction was investigated. Percolation and supercritical fluid extraction (SFE) were employed to make comparisons with ultrasonic extraction. Three variables, which included the concentration of solvent, the ratio of solvent volume/sample (mL/g), and extraction time, were found to have a great influence on ultrasonic extraction. The optimum extraction was with pure ethanol with a solvent volume/sample ratio 8:1 (mL/g) and extraction time of 30 min. Under the optimum extraction conditions, the extraction yield could reach 8.8% which was higher than that using SFE with ethanol as co-solvent and a content of ferulic acid of 0.7%; both the yield and the content were higher than those obtained by percolation. Ultrasonic extraction significantly shortened the time required for the extraction process. Overall, ultrasonic extraction was shown to be highly efficient in the extraction of ferulic acid from Ligusticum chuanxiong.  相似文献   

20.
The oil and extracts of Satureja hortensis cultivated in Iran were extracted using supercritical carbon dioxide and hydrodistillation method. The oil and extracts were analyzed by GC-FID and GC/MS. The compounds were identified according to their retention indices and mass spectra (EI, 70 eV). The effects of various parameters such as pressure, temperature, percent of modifier (methanol) and extraction time, were investigated by a fractional factorial design (24-1) to determine the significant parameters and their interactions. The results showed that the pressure, temperature and percent of modifier are significant (p < 0.05), but the extraction time was found to be insignificant. The response surface methodology (RSM), based on Box-Behnken design was employed to obtain the optimum conditions of the significant parameters (pressure, temperature and percent of modifier). The optimal conditions could be obtained at a pressure of 35.0 MPa, temperature of 72.6 °C, and 8.6% (v/v) for methanol. The main extracted components using SFE were γ-Terpinene (35.5%), Thymol (18.2%) and Carvacrol (29.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号