首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of using the leaves of Cordia verbenacea as a new source of natural antioxidant compounds was investigated. In the present work, extracts from C. verbenacea were obtained using different extraction methods: supercritical fluid extraction (SFE), Soxhlet (SE), hydrodistillation and maceration, with the objective to evaluate the methods in terms of yield and antioxidant potential. The high-pressure technique was applied using pure CO2 and CO2 with co-solvent at different temperatures and pressures (30, 40 and 50 °C and 100, 200, and 300 bar). Organic solvents with different polarities were used to obtain extracts by low-pressure extraction processes. The extracts were evaluated according to their antioxidant activity using total phenolic content, scavenging abilities on DPPH radical, total antioxidant activities (ABTS•+), superoxide anion radical-scavenging (O2) and protection against lipid peroxidation in vitro (LPO). Ethyl acetate fraction obtained by maceration and extract isolated by SE using 25% aqueous mixture of ethanol possessed the highest scavenger activity against DPPH radical (IC50 = 9.2 ± 0.4 μg/ml, IC50 = 27.4 ± 0.1 μg/ml, respectively). The SFE with 8% ethanol as a co-solvent produced extracts with distinguished increase in the antioxidant activity. The Soxhlet extract with ethyl acetate exhibited a strong reduction of lipid peroxidation (IC50 = 209 ± 3 μg/ml) value comparable to the standard rutin (IC50 = 203 ± 2 μg/ml). The results indicate that extracts of C. verbenacea have important potential as a source of bioactive compounds with antioxidant activity.  相似文献   

2.
Supercritical fluid carbon dioxide (SF-CO2) extraction (SFE) of flavonoids from Maydis stigma and its nitrite-scavenging ability were investigated. The effects of extraction time, particle size and co-solvent composition in terms of water content in ethanol were first optimized. Then, a Box-Behnken design combined with response surface methodology (RSM) was employed to study the effects of three independent variables (temperature, pressure and co-solvent amount) on the extraction yield of flavonoids. A maximal extraction yield of flavonoids of approximately 4.24 mg/g of M. stigma by SFE was obtained under optimal conditions (a temperature of 50.88 °C, a pressure of 41.80 MPa, a co-solvent amount of 2.488 mL/g and an extraction time of 120 min with 0.4-mm particle sizes and 20% aqueous ethanol as the co-solvent). Furthermore, the nitrite-scavenging ability of the flavonoid-enriched SFE extracts was assessed using the Griess reagent. The flavonoid-enriched SFE extracts exhibited the highest scavenging ability on nitrite (88.1 ± 3.04%) at the concentration of 500 μg/mL and at pH 3.0. The nitrite-scavenging ability of the extracts appeared to be concentration dependent but negatively correlated with the pH.  相似文献   

3.
Abajeru (Chrysobalanus icaco) is a plant that has hypoglycemic properties and is often used in Brazilian popular medicine. In order to identify the flavoring and hypoglycemic substances present in this plant, this work has an objective for the extraction of the essential oil presented in the leaves of abajeru using the supercritical fluid extraction (SFE). The supercritical solvent used is CO2, because of its moderate critical temperature and pressure, atoxicity, low cost and volatility. The experiments were conducted using dried leaves in an apparatus containing a high-pressure pump, a stainless steel extractor of 42 mL of volume and a micrometric valve for sampling. Different operational conditions were tested, varying mainly the temperature (313.15-353.15 K) and the pressure (10.5-20 kPa) in order to investigate the efficiency of the process. The results showed that the best operational condition was at 20 kPa and 353.15 K. To compare the supercritical carbon dioxide results, the essential oil was also extracted by hydrodistillation and soxhlet, using ethanol as solvent. The chromatographic analysis showed that the different technologies studied extracted the same classes of compounds but the SFE obtained the extract with potential hypoglycemic activity with the presence of lupenol.  相似文献   

4.
Brazilian Ginseng extracts of two species, Pfaffia paniculata and Pfaffia glomerata, were obtained by supercritical fluid extraction (SFE) with CO2 and by low-pressure solvent extraction (LPSE) with methanol, hexane and ethanol. The SFE assays were conducted at pressures of 100, 200 and 300 bar, and temperatures of 30 and 50 °C. The qualitative chemical compositions of the extracts were determined by thin layer chromatography (TLC). One of the active principles of interest from P. glomerata extract, β-ecdysone, was identified and quantified by HPLC. The antioxidant activities of Brazilian Ginseng extracts were determined by the coupled reaction of linolenic acid and β-carotene. For P. paniculata, the highest SFE yield was obtained at 200 bar/50 °C (0.22%, dry basis—d.b.), while the best extraction condition for P. glomerata was obtained at 200 bar/30 °C (0.18%, d.b.). The higher extract yields obtained by LPSE were 2.0% and 5.8% (w/w, d.b.) for P. paniculata and P. glomerata, respectively, both obtained with methanol as extraction solvent. From the overall extraction curve of P. glomerata, it was possible to obtain the kinetic parameters of extraction; the duration of the CER (constant extraction rate) period was determined as 134 min. The TLC plates showed the possible presence of flavonoids in the ethanolic extract for both Pfaffia species. The antioxidant activity analysis detected that LPSE extracts had higher activity than SFE extracts.  相似文献   

5.
In this work the supercritical fluid extraction (SFE) with carbon dioxide (CO2) and with ethyl acetate (EtAc) and ethanol (EtOH) as co-solvents was applied to obtain the phenolic fraction from guava seeds (Psidium guajava L.). The extraction was explored at various operating conditions, using 10, 20 and 30 MPa and 40, 50 and 60 °C. The use of EtAc and EtOH as co-solvents in SFE was also studied. The supercritical process was compared with traditional techniques such as Soxhlet extraction using EtAc and EtOH as solvents. The quality of the different extracts, obtained using SFE and Soxhlet methods and different solvents, was evaluated through the antioxidant activity, obtained by the collection methods of scavenging DPPH and bleaching of β-carotene, and also through the total phenolic content (TPC) of the samples, by the Folin-Ciocalteu method. The antioxidant potential indicates the use of ethanol as co-solvent as the best modifier in SFE, used in concentration of 10% (w/w) at 50 °C and 30 MPa. The quality of the extracts obtained by SFE with EtOH varied with the operating conditions of temperature and pressure, with higher values obtained at 10 and 20 MPa for TPC results and also antioxidant methods. The process yield of the phenolic fraction was also evaluated for all the extraction procedures studied (SFE and Soxhlet), with results varying from 0.380 to 1.738% (w/w).  相似文献   

6.
The objective of the work was to optimize the extraction of Persea indica L. bioactive compounds by means of supercritical fluid extraction (SFE) and analyze their insecticidal effects. P. indica L. is one of the dominant species of the Canarian laurel forest, a relict of the Tertiary flora. Different extraction conditions (pressure, plant material particle size, temperature, CO2 flow) and the influence of entrainer were tested and the evolution of the extracted compounds was screened by HPLC-MS. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, four CO2 densities ranging from 628.61 kg/m3 to 839.81 kg/m3 were studied in the range of 10.0-20.0 MPa and 40-50 °C. The extracts contained insecticidal ryanodanes of great interest, previously described as insecticidal components of P. indica. The insecticidal antifeedant activity of selected extracts was inspected. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   

7.
In this work we designed and built a homemade supercritical fluid extraction (HM-SFE) system, in which pure CO2 and CO2 with co-solvents were used. The HM-SFE was made by means of thermal dilatation-contraction (TDC). This HM-SFE system was used for obtaining guava (Psidium guajava L.) seed oil, using supercritical CO2 adding ethanol as co-solvent (CO2 SC/EtOH), extractions were performed at 313 K and different pressures (10, 20 and 30 MPa), each one in four stages of 30 min, the extract with higher yield was subjected to transesterification and high-resolution gas chromatography (HRGC) analysis. The highest extraction yield was obtained at 30 MPa (17.30% w/w), this yield was higher than one observed in a previous work using SC-CO2, and near to the one obtained by Soxhlet extraction (20.2% w/w). HRGC enabled the identification of components of the derivatized extract as methyl esters of palmitic, oleic, linoleic, and stearic fatty acids. The results obtained with HM-SFE system was compared with a commercial SFE system, obtained very similar results. In this work was possible to construct a low cost and simple manner HM-SFE system which was employed for obtaining guava seed oil, using CO2 SC/EtOH.  相似文献   

8.
The supercritical fluid extraction (SFE) followed by the dispersive liquid-liquid microextraction (DLLME) has been developed for extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. PAHs were employed as model compounds to assess the extraction procedure and were determined by gas chromatography-flame ionization detection (GC-FID). SFE of PAHs was performed at 313 K and 253.2 bar, at static and dynamic times 10 and 30 min, respectively. The extracted PAHs were collected in 1 mL of acetonitrile. Subsequently, 16 μL of chlorobenzene (as extraction solvent) was added to collecting solvent (1.0 mL of acetonitrile). Then, the resulted mixture was injected into 5.0 mL of aqueous solution, rapidly. After centrifugation, the PAHs in the sedimented phase were analyzed by GC-FID. Effects of significant parameters on the extraction in SFE and DLLME methods were investigated. Under the optimum conditions, the calibration plots were linear in the range of 0.4-41.6 mg kg−1 and the limits of detection (LODs) were 0.2 mg kg−1 for all of the analytes. Analysis of PAHs in different solid samples showed that the improved technique has great potential for PAHs analysis in marine sediments. SFE-DLLME leads to high preconcentration factor, easy use of DLLME in solid samples and solving the main problem of SFE that is the extra step (vaporization of large volume of toxic organic solvent) after extraction needed prior to final analysis.  相似文献   

9.
The supercritical carbon dioxide (SFE) extraction of Dalmatian sage (Salvia officinalis L.) was investigated and compared to extraction performed by Soxhlet ethanol-water (70:30) mixture extraction (SE) and hydrodistillation (HD). The supercritical extraction allowed isolation of wide spectrum of phytochemicals, while other applied methods were limited to either volatiles (HD) or high molecular compounds isolation (SE). The kinetics of the supercritical extraction and fractionation within the pressure range of 10-30 MPa at 50 °C were also analyzed as well as the chemical compositions of total extract and partial or differential fractions isolated at different CO2 consumption. Volatile fraction could be isolated at low pressure and low CO2 consumption, whereby the pressures between 10 and 15 MPa followed by increased CO2 consumption were favourable for obtaining desired selectivity of diterpenes which contain compounds with expressed antioxidative characteristics.  相似文献   

10.
Lavandin (Lavandula hybrida) essential oil contains components with biocide properties that can be used as substitutes of synthetic drugs in livestock. This application requires an appropriate formulation of the essential oil. In this work, supercritical impregnation of lavandin oil has been proposed as a possible formulation process, due to the high solubility of lavandin essential oil in supercritical carbon dioxide. The polymer used in this work as carrier material was starch modified with the n-octenil succinate (OSA) group, in the form of powder with a particle size of 30 μm. The effects of operational pressure (10-12 MPa), temperature (313-323 K) and lavandin oil to starch mass ratio (0.2-1) were studied. Impregnation loads ranging from 25 to 150 mg lavandin oil/g OSA-starch were obtained. The distribution coefficient of essential oil between the starch and the supercritical phase as well as the essential oil load depended on the density of CO2.  相似文献   

11.
Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.  相似文献   

12.
In the present study, the use of supercritical fluid extraction was investigated for selected compounds from the plant Japanese knotweed (Polygonum cuspidatum Siebold & Zucc.). The effects of parameters such as type of modifier, pressure, temperature and time on the extraction efficiency of piceid, resveratrol and emodin were studied. The optimal conditions were found as follows: modifier acetonitrile, 40 MPa, 100 °C and 45 min. SFE results were compared with those obtained by conventional Soxhlet extraction carried out for 4 h. The extracts obtained using these two techniques were analysed by liquid chromatography coupled with UV detection. LiChrospher® 100, RP-18 column (125 mm × 4 mm, 5 μm) coupled with gradient elution acetonitrile in acidified water was used for the separation of compounds at flow rate 0.5 mL min−1. Detection was carried out at 306 nm. Limits of detection were 21, 8 and 52 μg L−1 for piceid, resveratrol and emodin, respectively. The linear range was 0.5-10 mg L−1 for piceid and resveratrol, and 1-50 mg L−1 for emodin with correlation coefficients above 0.9981. Based on the comparison of both methods extracted amount of piceid by Soxhlet extraction is approximately 10 times higher than by SFE method, while the extraction yield of emodin by Soxhlet extraction in approx. 2.5 times lower than by SFE. The advantage of SFE over Soxhlet extraction method is more than 5 times shorter extraction time period.  相似文献   

13.
The goal of present work was to investigate and explain kinetics and mass transfer phenomena occurring during the SFE from the mixture of two plants with different initial composition. The extractions from pure clove, oregano and thyme as well as from clove/oregano (C/O) and clove/thyme (C/T) mixtures with various initial compositions of plant material were carried out using supercritical CO2 at 10 MPa and 40 °C. The results indicated that presence of light compounds in supercritical CO2 originated from the oregano leaves or thyme at the beginning of extraction process increases the extraction rate of compounds from clove bud. Only small added amounts of oregano or thyme to clove bud (C/O - 90:10%, w/w; or C/T - 84:16%, w/w) in the starting plant mixture had the same effect resulted in the similar and the highest increase of the extraction rate and had negligible influence on total extraction yield compared to extract isolated from pure clove. Different mathematical models were used for simulation of experimental data which showed that the highest increase of the solubility of extractable compounds in supercritical CO2 as well as the highest mass transfer rate in the solid phase during extractions existed during extraction from C/O (90:10, w/w) and C/T (84:16, w/w) mixtures. Decrease of SC CO2 consumption or shorter time of extraction necessary for achieving desired extract yield in the case of SFE of the clove buds could be important for industrial-scale application.  相似文献   

14.
Supercritical fluid extraction (SFE) coupled with dispersive liquid-liquid microextraction (DLLME) and followed by gas chromatography-flame ionization detection (GC-FID) was applied for extraction and determination of ultra-trace amounts of seven organophosphorus pesticides (OPPs) (o,o,o-triethyl phosphorothioate, thionazin, sulfotepp, disulfoton, methyl parathion, parathion, and famphur) in soil and marine sediment samples. Supercritical CO2 at 150 bar, 60 °C, 10 min static and 30 min dynamic extraction times was used to extract the pesticides. The extracts were collected in 1.0 mL of acetonitrile. Seventeen μL of carbon tetrachloride was dissolved in the collecting solvent and the mixture was then injected rapidly into 5.0 mL of aqueous solution. About (5.0 ± 0.2 μL) of sediment phase was collected after centrifuging and finally 2.0 μL of it was injected into gas chromatography (GC) injection port for analyses. The extraction recoveries for the target analytes were in the range of 44.4% and 95.4% and relative standard deviation (RSD%) for four-replicate measurements was below 7.5%. The limit detections of the method for determining the pesticides were in the range of 0.001-0.009 mg kg−1. The method was successfully applied for analysis of OPPs in real soil and marine sediment samples and satisfactory results were obtained.  相似文献   

15.
The relevant applications that supercritical fluid extraction (SFE) has attained in the food industry in the last decades increased the interest in the development of thermodynamic models to represent the phase equilibria of systems comprising food-related substances and supercritical carbon dioxide (SCCO2). The targets are twofold: (i) calculation of solid solubilities in SCCO2 pure or with polar co-solvents (mainly ethanol in food applications), what directly affects the selectivity of one of the most applied processes, e.g. the semi-batch SFE of plant material, and (ii) calculation of vapor-liquid equilibrium compositions of liquid raw materials processed in countercurrent packed columns, what is straightforwardly related with the number of theoretical stages necessary to achieve the desired separation.Cubic equations of state derived from the equation proposed by van der Waals (vdW-type EoSs, e.g. Peng-Robinson and Soave-Redlich-Kwong EoS) are the most common thermodynamic models applied to achieve these objectives.In this work, the application of vdW-type EoSs to food-type substance + SCCO2 is reviewed. More than 100 systems, comprising lipids, antioxidants, pigments, alkaloids, vitamins, etc. were investigated from 2003 up today. Even though phase equilibria modeling of SCCO2 + food-related systems involves serious difficulties, the extensive and, in many cases, successful application of vdW-type EoSs demonstrates that though developed 100 years ago the van der Waals equation is lively and younger than before.  相似文献   

16.
The present study describes chemical composition, angiotensin I-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil of wild growing Thymus algeriensis Boiss. et Reut. (Lamiaceae), a traditional medicinal plant which is mainly endemic in Tunisia and Algeria. The essential oil from the fresh leaves and flowers of T. algeriensis were extracted by hydrodistillation and analysed by GC and GC/MS. Fifty-seven compounds were identified accounting for 97.71% of the total oil, where oxygenated monoterpenes constituted the main chemical class (44.85%). The oil was dominated by camphor (7.82%), 4-terpineol (7.36%), α-pinene (6.75%), 1,8-cineole (5.54%) and cis-sabinene hydrate (5.29%). The T. algeriensis essential oil was found to possess an interesting inhibitory activity towards ACE with an IC50 value of 150 μg/ml. The obtained results also showed that this oil can act as radical scavengers (IC50 = 0.8 mg/ml) and displayed a lipid peroxidation inhibitory activity (IC50 = 0.5 mg/ml) as evaluated by 2,2-diphenyl-1-picrylhydrazyl and β-carotene bleaching methods, respectively. Furthermore, the oil was tested for antimicrobial activity against six bacterial strains and two fungal strains. The inhibition zones and minimal inhibitory concentration values of microbial strains were in the range of 13.5-64 mm and 1-6 μl/ml, respectively. The oil exhibited remarkable inhibitory activity against fungal and Gram-positive bacteria strains.  相似文献   

17.
The objective of this study was to obtain orange (Citrus sinensis L. Osbeck) pomace extract using supercritical fluid extraction (SFE) with CO2 and with CO2 and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and biological activity, low pressure methods were also applied to obtain orange extracts, such as ultrasound (UE) and soxhlet (SOX), with different organic solvents, and hydrodistillation (HD). The SFE conditions were temperatures of 313.15 K and 323.15 K and pressures from 100 to 300 bar. The SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were also investigated. The antioxidant potential of the extracts was evaluated by the DPPH method, by the Folin-Ciocalteau method and by the β-carotene/linoleic acid bleaching method. The antimicrobial activity of the extracts was also studied. The main compounds identified were l-limonene, palmitic and oleic acids, n-butyl benzenesulfonamide and β-sitosterol.  相似文献   

18.
The objective of the work was to optimize the extraction of wormwood oil by supercritical fluid extraction (SFE) of growth-controlled plant material. Different extraction conditions, two growth techniques and various crops were tested and the evolution of the extracted oil composition was screened chromatographically. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, six CO2 densities ranging from 285.0 kg/m3 to 819.5 kg/m3 were studied in the range of 9.0-18.0 MPa and 40-50 °C. A systematic study was carried out with plant material from 2005, while SFE of 2006, 2008 and aeroponically grown crops was performed for comparative purposes. The effect of ethanol as a modifier of the supercritical fluid extraction was also studied. The major compounds found in the SFE extracts as well as in the HD essential oils were Z-epoxyocimene, chrysanthenol and chrysanthenyl acetate. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   

19.
Thermal stability of biodiesel in supercritical methanol   总被引:1,自引:0,他引:1  
Hiroaki Imahara 《Fuel》2008,87(1):1-6
Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270 °C/17 MPa and 380 °C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270 °C/17 MPa, but at 350 °C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270 °C/17 MPa and 350 °C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300 °C, preferably 270 °C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production.  相似文献   

20.
To enhance the extraction efficiency and reduce the energy consumption, an emerging technology named negative pressure cavitation extraction (NPCE) has been shown to be a feasible option for the extraction of bioactive compounds in agricultural crops and medicinal plants. Meanwhile, it can be applied at the pilot scale as a manufacturing process for edible and medicinal plants. Currently, NPCE was proposed for extraction of baicalin, wogonoside, baicalein and wogonin from Radix Scutellariae on the basis of a central composite design (CCD) and response surface methodology (RSM). With proper optimization (80 mesh of particle size, 40 mL/g of liquid/solid ratio, 75% aqueous ethanol as extraction solvent, 60 min extraction time and −0.07 MPa vacuum degree), NPCE was observed to have good extraction efficiency compared with other conventional extraction methods. Furthermore, the antioxidant activities of crude extracts with different extraction methods were assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay. Our results showed that NPCE extract possessed better antioxidant activity with IC50 value of 3.24 μg/mL compared with the UAE, HRE and SE extracts with IC50 values of 7.85, 12.14 and 11.44 μg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号