首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presynaptic inhibition of transmitter release from primary sensory afferents is a common strategy for regulating sensory input to the arthropod central nervous system. In the olfactory system, presynaptic inhibition of olfactory receptor neurons has been long suspected, but until recently could not be demonstrated directly because of the difficulty in recording from the afferent nerve terminals. A preparation using the isolated but intact brain of the spiny lobster in combination with voltage-sensitive dye staining has allowed stimulus-evoked responses of olfactory receptor axons to be recorded selectively with optical imaging methods. This approach has provided the first direct physiological evidence for presynaptic inhibition of olfactory receptor neurons. As in other arthropod sensory systems, the cellular mechanism underlying presynaptic afferent inhibition appears to be a reduction of action potential amplitude in the axon terminal. In the spiny lobster, two inhibitory transmitters, GABA and histamine, can independently mediate presynaptic inhibition. GABA- and histaminergic interneurons in the lobster olfactory lobe (the target of olfactory receptor neurons) constitute dual, functionally distinct inhibitory pathways that are likely to play different roles in regulating primary olfactory input to the CNS. Presynaptic inhibition in the vertebrate olfactory system is also mediated by dual inhibitory pathways, but via a different cellular mechanism. Thus, it is possible that presynaptic inhibition of primary olfactory afferents evolved independently in vertebrates and invertebrates to fill a common, fundamental role in processing olfactory information.  相似文献   

2.
The afferent terminals of arthropod sensory neurones receive abundant input synapses, usually closely intermingled with the sites of synaptic output. The majority of the input synapses use the neurotransmitter GABA, but in some afferents there is a significant glutamatergic or histaminergic component. GABA and histamine shunt afferent action potentials by increasing chloride conductance. Though glutamate can also have this effect in the arthropod central nervous system, its action on afferent terminals appears to be mediated by increases in potassium conductance or by the action of metabotropic receptors. The action of the presynaptic synapses on the afferents are many and varied. Even on the same afferent, they may have several distinct roles that can involve both tonic and phasic patterns of primary afferent depolarisation. Despite the ubiquity and importance of their effects however, the populations of neurones from which the presynaptic synapses are made, remain largely unidentified.  相似文献   

3.
4.
Two types of sensory organs in crustaceans and arachnids, the various mechanoreceptors of spiders and the crustacean muscle receptor organs (MRO), receive extensive efferent synaptic innervation in the periphery. Although the two sensory systems are quite different-the MRO is a muscle stretch receptor while most spider mechanoreceptors are cuticular sensilla-this innervation exhibits marked similarities. Detailed ultrastructural investigations of the synaptic contacts along the mechanosensitive neurons of a spider slit sense organ reveal four important features, all having remarkable resemblances to the synaptic innervation at the MRO: (1) The mechanosensory neurons are accompanied by several fine fibers of central origin, which are presynaptic upon the mechanoreceptors. Efferent control of sensory function has only recently been confirmed electrophysiologically for the peripheral innervation of spider slit sensilla. (2) Different microcircuit configuration types, identified on the basis of the structural organization of their synapses. (3) Synaptic contacts, not only upon the sensory neurons but also between the efferent fibers themselves. (4) Two identified neurotransmitter candidates, GABA and glutamate. Physiological evidence for GABAergic and glutamatergic transmission is incomplete at spider sensilla. Given that the sensory neurons are quite different in their location and origin, these parallels are most likely convergent. Although their significance is only partially understood, mostly from work on the MRO, the close similarities seem to reflect functional constraints on the organization of efferent pathways in the brain and in the periphery.  相似文献   

5.
Radioautography and immunocytochemistry may be combined at the light and electron microscopic levels for simultaneously localizing uptake sites for exogenous transmitter molecules [such as (3H)monoamines or (3H)amino acids] and endogenous transmitter-related antigens (classical transmitters and their synthesizing enzymes as well as neuropeptides) in the central nervous system. Silver grain accumulations indicative of transmitter uptake sites are readily distinguishable from immunocytochemical labels of the peroxidase-antiperoxidase (PAP), avitin-biotin, or colloidal gold methods. The combination of uptake radioautography and immunocytochemistry may be applied to the investigation of (1) the chemical identity of (3H) transmitter-accumulating elements, (2) the coexistence of different neurotransmitters within the same neurons, and (3) the cellular basis of interactions between certain neurotransmitters, in particular monoamines, GABA, and neuropeptides. This article describes and evaluates the method and reviews the available experimental data derived from its application.  相似文献   

6.
As part of continuous research on the neurobiology of the locust, the distribution and functions of neurotransmitter candidates in the nervous system have been analyzed particularly well. In the locust brain, acetylcholine, glutamate, gamma-aminobutyric acid (GABA), and the biogenic amines serotonin, dopamine, octopamine, and histamine most likely serve a transmitter function. Increasing evidence, furthermore, supports a signalling function for the gaseous molecule nitric oxide, but a role for neuroptides is so far suggested only by immunocytochemistry. Acetylcholine, glutamate, and GABA appear to be present in large numbers of interneurons. As in other insects, antennal sensory afferents might be cholinergic, while glutamate is the transmitter candidate of antennal motoneurons. GABA is regarded as the principle inhibitory transmitter of the brain, which is supported by physiological studies in the antennal lobe. The cellular distribution of biogenic amines has been analyzed particularly well, in some cases down to physiologically characterized neurons. Amines are present in small numbers of interneurons, often with large branching patterns, suggesting neuromodulatory roles. Histamine, furthermore, is the transmitter of photoreceptor neurons. In addition to these "classical transmitter substances," more than 60 neuropeptides were identified in the locust. Many antisera against locust neuropeptides label characteristic patterns of neurosecretory neurons and interneurons, suggesting that these peptides have neuroactive functions in addition to hormonal roles. Physiological studies supporting a neuroactive role, however, are still lacking. Nitric oxide, the latest addition to the list of neurotransmitter candidates, appears to be involved in early stages of sensory processing in the visual and olfactory systems.  相似文献   

7.
Scanning electron microscopy and atomic force microscopy were used to study the silk spinning apparatus and silks of Harpactea rubicunda spiders. Three types of silk secretions that are produced by three kinds of silk spinning glands (ampullate, piriform, and pseudaciniform) and released through three types of spigots, were confirmed for both adult and juvenile spiders. Silk secretions for the construction of spider webs for shelter or retreat are produced by the pseudaciniform silk glands. Silk secretions that are released from spigots in the course of web construction are not processed by the legs during the subsequent process of hardening. Pairs of nanofibril bundles seemed to be part of the basic microarchitecture of the web silk fibers as revealed by AFM. These fiber bundles frequently not only overlap one another, but occasionally also interweave. This structural variability may strengthen the spider web. High‐resolution AFM scans of individual nanofibrils show a distinctly segmented nanostructure. Each globular segment is ~30–40 nm long along the longitudinal axis of the fiber, and resembles a nanosegment of artificial fibroin described by Perez‐Rigueiro et al. (2007). Microsc. Res. Tech., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The anterior median (AM) eye of the nocturnal spider Araneus ventricosus showed a marked circadian oscillation of sensitivity, but that of the diurnal spider Menemerus confusus showed no circadian oscillation. The AM eyes of the noct/diurnal spiders Argiope amoena and A. bruennichii have two types of photoreceptor cells with different sensitivities. The more sensitive cells showed a circadian oscillation of sensitivity, but the less sensitive cells did not. The circadian sensitivity change of the eyes was controlled by efferent neurosecretory fibers in the optic nerve. Illuminating the brain increased the frequency of efferent impulses in the optic nerve of Argiope, showing that certain photosensitive neurons are present in the brain. However, it seemed that the cerebral photosensitive neurons may be different from the efferent neurosecretory cells. The response of the cerebral photosensitive neurons increased transiently following diminution of the light intensity striking the eyes. The interaction between the cerebral photosensitive neurons and the eyes seemed to play a role in increasing this response.  相似文献   

9.
李体仁  黄超 《工具技术》2017,51(5):76-78
根据蜘蛛模型零件特点,确定了运用五轴加工中心,对蜘蛛模型长方体毛坯采用一次装夹、两面加工的工艺方法;针对腿部和触角刚性差、加工易变形问题,提出了增加其刚性,减少变形的方法,利用Power Mill软件仿形法,设计刀路,完成五轴编程,应用DMU 65mono BLOCK五轴加工中心完成产品加工。  相似文献   

10.
离合器从动盘存在的主要问题是从动盘毂疲劳强度不足,为了提高离合器的疲劳寿命,利用Pro/E建立了从动盘毂模型,然后利用计算机辅助设计软件Msc.Patran,Msc.Fatigue对从动盘毂进行了强度和疲劳寿命分析,得到了从动盘毂的应力云图和疲劳寿命云图,并进行了优化。分析及优化结果表明,该研究为从动盘毂的设计提供了理论依据。  相似文献   

11.
国产球笼式等速万向节由于回转方向间隙原因会产生很大的噪声和振动,其中星形套是球笼式等速万向节至关重要的零件,提高星形套制造精度的关键在于提高星形套零件沟道的加工精度,在机床的精度不变情况下,必须设计研制合理卡具,才可以获得稳定的加工精度,提高生产率和降低加工成本。  相似文献   

12.
The biochemistry and molecular biology of biogenic amines and their metabotropic receptors in insects, with a focus on locusts, is reviewed. These compounds are known to be responsible for the control of a huge variety of different behaviours. Receptors for these amines usually belong to the class of G-protein coupled receptors (GPCR) and transmit all known functions of these compounds. The physiological significance of biogenic amine neurotransmission in insects, especially in locusts is briefly summarised. Regarding the corresponding receptors, their pharmacological features and the molecular properties are described in detail.  相似文献   

13.
Pectines are unique, midventral sensory appendages that help direct mating and food-finding behaviors in scorpions. Dense two-dimensional arrays of bimodally sensitive (chemical and mechanical) peg sensilla form the primary sensory structures on pectines. Several qualities of peg sensilla make them well suited to electrophysiological investigation, including accessibility, stability of extracellular recordings, and the ease with which spiking cells can be identified and categorized. Cross-correlations of spontaneous neural activity show signs of synaptic interactions between sensillar neurons in all species examined to date (Paruroctonus mesaensis, Hadrurus arizonensis, Centruroides vittatus) representing three families and two superfamilies. Both excitatory and inhibitory interactions have been observed, as well as possible dyadic synaptic arrangement. Computer simulations of cross-correlograms are consistent with experimental data and may help provide additional insight into functionality of synaptic connections. Intra-sensillar interactions, coupled with the topographic order of peg sensilla and their central nervous system projections, may allow scorpions to precisely resolve microfeatures of chemical stimuli. Future research directions include inter-sensillar recordings to determine whether synaptic interactions extend between adjacent sensilla. Other unresolved questions that can be approached electrophysiologically are whether mechanosensory cells interact with chemosensitive cells and how the synaptic circuits function under specific chemical and mechanical stimulation.  相似文献   

14.
Various researches and studies have demonstrated that spider silk is much stronger and more deformable than a steel string of the same diameter from a mechanical approach. These excellent properties have caused many scientific disciplines to get involved, such as bio-mechanics, bio-materials and bio-mimetics, in order to create a material of similar properties and characteristics. It should be noted that the researches and studies have been oriented mainly as a quasi-static model. For this research, the analysis has taken a dynamic approach and determined the dissipation energy of a structure which is made of spider silk “Dragline” and produced by the Argiope-Argentata spider, through an analytical-experimental way, when being subjected to impulsive loading. Both experimental and analytical results, the latter obtained by using adjusted models, have given high levels of dissipation energy during the first cycle of vibration, which are consistent with the values suggested by other authors.  相似文献   

15.
The fine structure of both the afferent and efferent hair cell synapses in the sensory epithelium of guinea pig organ of Corti was examined by freeze-fracture electron microscopy. In the afferent synapse, barlike aggregates of intramembrane particles (IMPs) of about 10 nm in diameter were seen on the P-face of the afferent presynaptic membrane directly beneath the presynaptic dense projection which is located in the active zone of the presynaptic membrane. Small and large depressions have been seen on the presynaptic membrane. The former were observed in the proximity of the barlike aggregates, while the latter were observed some distance from the aggregate. In outer hair cells, IMPs of about 10 nm in diameter were seen on the P-face of the afferent postsynaptic membrane at a density of 3,000/μm2. In the efferent synapse, many aggregates composed of from several to tens of large IMPs of 13 nm in diameter were observed on the presynaptic membrane. These aggregates were localized to small membrane depressions, which tended to be deeper as particle number per aggregate increased. Dense populations of IMPs of about 9 nm in diameter were observed on the P-face of the efferent postsynaptic membrane at a density of 4,000/μm2. A fenestrated subsynaptic cistern completely covers the efferent postsynaptic membrane. Moreover, the subsynaptic cistern spans several efferent postsynaptic membranes when efferent synapses are gathered in a group. In the afferent and efferent synapses of hair cells, specializations of the synaptic membranes were represented by marked aggregates characteristic of IMPs. In the efferent synapse, IMP movement inside the synaptic membrane was proposed in relationship to retrival of synaptic vesicle membrane. Structural relationship between the subsynaptic cistern and efferent postsynaptic membrane was revealed.  相似文献   

16.
Synaptic vesicles are membrane-bound organelles storing neurotransmitters in presynaptic terminals and releasing them into the synaptic cleft. Coordinated movements of synaptic vesicles relate to synaptic function and their spatial arrangement can provide useful information about the activity of a synapse. This article presents a technique to extract quantitative information about three-dimensional (3D) spatial arrangement of synaptic vesicles from measurements performed on single ultrathin random sections of a presynaptic terminal. The technique presumes quantification of a 2D density as well as 2D spatial pattern formed by vesicle profiles using a minimum spanning tree (MST) algorithm, in digitized micrographs of a presynaptic terminal. Further, original software was used to simulate a 3D spatial arrangement of synaptic vesicles and their random sectioning. A 3D density and pattern of synaptic vesicles were used as basic input parameters of the model, while a 2D density and MST quantities for vesicle profiles served as output, model-derived parameters allowing one to compare and fit simulated distributions to experimental ones. Pilot simulations performed to check the validity of the technique have shown that a 2D density and MST quantities of vesicle profiles closely relate to a 3D density and spatial pattern of vesicles. The technique was demonstrated in the analysis of spatial distribution of synaptic vesicles in axonal terminals forming asymmetric synaptic densities in the stratum radiatum of the CA1 subfield of the murine hippocampus.  相似文献   

17.
Morphology of the antennae of the female workers of the ponerine ant Dinoponera lucida was examined by light and scanning electron microscopy. In several antennomers, we found secretory gland cells of class I and III. Class III gland cells release their secretion through single pores in the antennal surface, whereas class I secretory cells are seen as tall epidermal cells close to the cuticle. Both gland types have weak reaction for total proteins and neutral polysaccharides. Six distinct sensilla types were observed: trichodea, chaetica, campaniform, basiconica, placodea, and coeloconica. The possible sensory functions of these sensilla and the gland functions are discussed.  相似文献   

18.
Experience‐dependent synapse remodeling is associated with information storage in the nervous system. Neuronal synapses show alteration in various neurological and cognitive disorders in their structure and function. At the ultrastructural level, parallel fiber boutons contacting multiple spines of Purkinje cells in the cerebellar cortex are commonly observed in physiologically enriched animals as well as pathological ataxic mutants. However, the dendritic origin of those spines on parallel fiber multiple‐synapse boutons (MSBs) has been poorly understood. Here, we investigated this issue by 3‐dimensional ultrastructural analysis to determine synaptic connectivity of MSBs in both mice housed in physically enriched environment and cerebellar ataxic mutants. Our results demonstrated that environmental enrichment selectively induced MSBs to contact spines from the same parent dendrite, indicating focal strengthening of synapse through the simultaneous activation of two adjacent spines. In contrast, ataxic mutants displaying impaired motor coordination had significantly more MSBs involving spines originating from different neighboring dendrites compared to both wild‐type and environmentally enriched animals, suggesting that compromising multiple synapse formation may lead to abnormal motor behavior in the mutant mice. These findings propose that environmental stimulation in normal animals mainly involves the refinement of preexisting synaptic networks, whereas pathological ataxic conditions may results from less‐selective but compromising multiple synaptic formation. This study underscores that different types of multiple synapse boutons may have disparate effects on cerebellar synaptic transmission.  相似文献   

19.
Male of Triatoma rubrofasciata has four elongated sac-like reproductive mesodermic accessory glands, lined by an inner single layer of secretory cells, with basal plasma membrane infolds and short apical microvilli, and externally enveloped by a thin visceral muscle layer. The secretory cells have a well-developed rough endoplasmic reticulum, Golgi complex, mitochondria, and secretory granules. In one day old adult the gland cells are poorly developed, presenting small, electron-transparent secretory granules scattered among the rough endoplasmatic reticulum, whereas in three days old adult these cells have the cisternae of the rough endoplasmatic reticulum varing size degree, filled with granular electrondense content. In five days old males the secretory granules increase in diameter, being released to the gland lumen. Therefore, there is an increase of the secretory activity according to male maturation.  相似文献   

20.
Over the last several years our knowledge of neurotransmitter receptors has increased dramatically as receptor types and subtypes have been identified through the development of selective antagonists, neuropharmacological studies, and radioactive ligand binding studies. At the same time major advances were made in the immunocytochemical localization of neurotransmitters and their related enzymes. However, only recently has immunocytochemistry been used to localize neurotransmitter receptors, and these studies have been limited. Four receptors have been localized in the CNS with immunocytochemistry: the nicotinic acetylcholine receptor, the beta-adrenergic receptor, the GABA/benzodiazepine receptor, and the glycine receptor. Of these the glycine receptor has been the most thoroughly characterized. Glycine receptor immunoreactivity is highly concentrated at postsynaptic sites, and the distribution of immunoreactivity appears to correlate closely with glycinergic neurons. However, immunocytochemical studies done on other receptors suggest such a distribution may not always be the case. Some receptors may not be concentrated at postsynaptic sites, and receptor distribution may not always closely fit the distribution of the respective neurotransmitter. Work is rapidly progressing on the purification of other receptors and on the production of selective antibodies which will allow immunocytochemical studies which address these and other questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号