首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
碳化硅(SiC)陶瓷具有优异的力学性能, 但是其断裂韧性相对较低。石墨烯的引入有望解决碳化硅陶瓷的断裂韧性较低的问题。本研究采用热压烧结工艺, 制备了具有不同还原-氧化石墨烯(rGO)掺入量的SiC复合材料。经过2050℃保温、40 MPa保压1 h后, 所制备的复合材料均烧结致密。对复合材料中rGO的掺入量、微观结构和力学性能的相互关系进行分析和讨论。加入4wt%的rGO后, 复合材料的三点抗弯强度达到564 MPa, 比热压SiC陶瓷提高了6%; 断裂韧性达到4.02 MPa•m1/2, 比热压SiC陶瓷提高了54%。加入6wt%的rGO后, 复合材料的三点抗弯强度达到420 MPa, 略低于热压SiC陶瓷, 但其断裂韧性达到4.56 MPa•m1/2, 比热压SiC陶瓷提高了75%。裂纹扩展微观结果显示, 主要增韧机理有裂纹偏转、裂纹桥连和rGO片的拔出。  相似文献   

2.
以两种不同配比Y2O3/Al2O3 (A, 2:3; B, 3:1, 总量15 wt%)为烧结助剂, 通过添加不同质量分数的SiC粉体,反应烧结制备了高强度的氮化硅/碳化硅复相陶瓷。并对材料的相组成、相对密度、显微结构和力学性能进行了分析。结果表明: 在1700℃保温2 h情况下, 烧结助剂A 与B对应的样品中α-Si3N4相全部转化为β-Si3N4; 添加5wt% SiC, 烧结助剂A对应样品的相对密度达到最大值94.8%, 且抗弯强度为521.8 MPa, 相对于不添加SiC样品的抗弯强度(338.7 MPa)提高了约54.1%。SiC能有效改善氮化硅基陶瓷力学性能, 且Si3N4/SiC复相陶瓷断裂以沿晶断裂方式为主。  相似文献   

3.
研究了碳的添加量为6wt%条件下, 添加碳源的种类及添加比例对制备的无压固相烧结碳化硅陶瓷的微观结构和性能的影响。结果表明: 采用纯无机碳源(碳黑), 制备的碳化硅陶瓷具有较为细小的碳化硅晶粒结构, 但致密度较低; 添加有机碳源(酚醛树脂)时, 随着其裂解碳添加量的增加, 碳化硅的晶粒逐步长大, 碳在材料中的分布更加均匀, 材料的致密度提高, 力学性能增强。当有机碳源裂解碳添加量达3wt%时, 材料的致密度最高, 并具有最大的弹性模量468 GPa, 断裂韧性达4.65 MPa·m1/2。当有机碳源裂解碳添加量大于3wt%时, 碳化硅晶粒发生局部异常长大现象, 材料的弯曲强度与断裂韧性进一步增加。同时, 对材料的热扩散系数随碳源添加种类和比例变化的规律也进行了分析与讨论。  相似文献   

4.
20%纳米ZrO2(3Y)粉末加入到高纯亚微米Al2O3粉中,采用高压干压成型方法和恒速升温多阶段短保温烧结方法制备出不同烧结温度下的复相陶瓷。研究烧结温度对复相陶瓷力学性能的影响,通过XRD,EDS和SEM对复相陶瓷进行元素组成和微观结构分析。结果表明:烧结温度在很大程度上影响着复相陶瓷的力学性能和微观结构,常压烧结1600℃保温8h时,相对密度、维氏硬度和断裂韧性达到最大,分别为98.6%,18.54GPa和9.3MPa·m1/2,而基体晶粒尺寸为1.4~8.1μm,ZrO2相变量为34.6%。1600℃下复相陶瓷具有优质的微观结构,断裂方式为沿晶-穿晶混合断裂模式。ZrO2(3Y)粉体的加入,从相变增韧、内晶型颗粒增韧和裂纹偏转等多个方面提高了复相陶瓷的断裂韧性。  相似文献   

5.
SiC-ZrO2(3Y)-Al2O3纳米复相陶瓷的力学性能和显微结构   总被引:1,自引:0,他引:1  
本文介绍用非均相沉淀方法制备的纳米SiC-ZrO2(3Y)-Al2O3复合粉体经放电等离子超快速烧结得到晶内型的纳米复相陶瓷,超快速烧结的升温速率为600℃/min,在烧结温度不保温,迅即在3 min内冷却至600°C以下. 力学性能研究结果表明,在1450℃超快速烧结得到的纳米复相陶瓷的抗弯强度高达1200MPa,断裂韧性K1c为5 MPa1/2. TEM像显示纳米SiC颗粒大多分布在Al2O3母体晶粒内,也有一些纳米SiC颗粒分布在ZrO2晶粒内. 断裂表面的SEM像表明,穿晶断裂是其主要的断裂模式,这是所制备的纳米复相陶瓷力学性能大幅提高的主要原因.  相似文献   

6.
Al2O3/Ni金属陶瓷显微结构和力学性能的研究   总被引:3,自引:0,他引:3  
采用包裹工艺和热压工艺制备了Al2O3/Ni金属陶瓷.在1450°C热压Ni包裹Al2O3复合粉体得到相对密度>98%的金属陶瓷,当温度>1400°C时,随着Ni含量的增加致密度下降.Ni颗粒位于三角晶界,随着含量的增加,断裂方式由沿晶转为穿晶断裂;在A12O3基体中引入Ni颗粒能够降低晶粒尺寸,提高强度和韧性.与单相Al2O3的力学性能相比,综合力学性能较好的NA4金属陶瓷的抗弯强度和断裂韧性分别提高了19%和35%,分析了金属陶瓷的增强增韧机制.  相似文献   

7.
研究了陶瓷粘结剂含量、碳化硅颗粒粒径以及烧结温度对高温气体过滤用碳化硅多孔陶瓷抗弯强度和气孔率的影响. 利用X射线衍射测试了多孔陶瓷烧结后的物相组成. 陶瓷粘结剂含量的增加使碳化硅多孔陶瓷的气孔率快速下降, 在陶瓷粘结剂含量15wt%时, 碳化硅多孔陶瓷可具有较高的气孔率(37.5%)和抗弯强度(27.63MPa). 随着碳化硅颗粒粒径从300?m减少到87um, 碳化硅多孔陶瓷的气孔率和抗弯强度可同时提高, 气孔率从35.5%增加到了42.4%, 而抗弯强度从19.92MPa增加到了25.18MPa. 碳化硅多孔陶瓷的烧结温度从1300℃增加到1400℃过程中, 其气孔率从38.7%迅速下降到35.4%, 而其抗弯强度一直在27MPa左右, 没有大幅变化, 所以该多孔陶瓷的烧结温度应该选在陶瓷粘结剂熔点(1300℃)附近, 不宜过高.  相似文献   

8.
以YbH2-MgO体系为烧结助剂, 采用两步法烧结制备了高热导率高强度氮化硅陶瓷, 研究了YbH2-MgO对氮化硅致密化行为、相组成、微观形貌、热导率和抗弯强度的影响。在预烧结阶段, YbH2在还原SiO2的同时原位生成了Yb2O3, 进而形成“缺氧-富氮”液相。该液相不仅有利于晶粒的生长, 更有利于阻碍晶格氧的生成, 相较于Yb2O3-MgO助剂体系, β-Si3N4晶粒尺寸更大, 晶格缺陷更少, 低热导晶间相更少, 在1900 ℃保温24 h后, 热导率最优可达131.15 W·m-1·K-1, 较Yb2O3-MgO体系提升13.7%。用YbH2代替Yb2O3, 在低温条件下烧结制备得到的氮化硅抗弯强度有所改善, 在1800 ℃保温4 h的抗弯强度可达(1008±35) MPa; 但在高温烧结时强度略有下降, 这与微观结构的变化密切相关。研究表明, YbH2-MgO体系是制备高热导率高强度氮化硅陶瓷的有效烧结助剂。  相似文献   

9.
采用固相反应法制备CaO-B2O3玻璃(简称“CB”玻璃)助烧的零膨胀系数β-锂霞石陶瓷。通过差示扫描量热(DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)手段分别对CB玻璃的热学特性和助烧后的β-锂霞石陶瓷样品的物相与显微形貌进行表征。结果表明, CB玻璃具有良好的助烧效果, 可以显著降低β-锂霞石陶瓷的烧结温度(从1300℃降至1150℃), 并大幅提高陶瓷的相对密度(从93.3%提高到97.4%)。加入CB玻璃助烧剂, β-锂霞石陶瓷致密性显著提高, 内部无微裂纹存在。加入4wt%和6wt% CB玻璃的β-锂霞石陶瓷在室温~200℃范围内具有零膨胀系数, 分别为0.02×10-6/K和0.4×10-6/K。然而, 加入8wt% CB玻璃的β-锂霞石陶瓷样品中产生了具有高正膨胀系数的新物相LiAlO2, 使样品的热膨胀系数提高至3.46×10-6/K。  相似文献   

10.
放电等离子超快速烧结 SiC-Al2O3纳米复相陶瓷   总被引:1,自引:0,他引:1  
本文介绍用非均相沉淀法制备的纳米SiC-Al2O3复合粉体经放电等离子超快速烧结得到晶内型的纳米复相陶瓷,超快速烧结的升温速率为600℃/min,在烧结温度不保温,迅即在3min内冷却至600℃以下.与热压烧结相比,可降低烧结温度200℃以上.力学性能研究结果表明,在1450℃超快速烧结得到的纳米复相陶瓷的抗弯强度高达1000MPa,维氏硬度为 19GPa,断裂韧性也比Al2O3有所提高.TEM像显示纳米SiC颗粒大多分布在Al2O3母体晶粒内,而断裂表面的SEM像表明,穿晶断裂是其主要的断裂模式,这是所制备的纳米复相陶瓷力学性能大幅提高的主要原因.  相似文献   

11.
SiC陶瓷具有优异的综合性能, 通过钎焊获得高强度接头是其获得广泛应用的重要前提。研究采用Al-(10, 20, 30, 40)Ti(Ti的名义原子含量10%、20%、30%、40%)系列合金, 在1550 ℃条件下, 对SiC陶瓷进行钎焊30 min。当中间层厚度为~50 μm时, SiC钎焊接头的平均剪切强度处于100~260 MPa范围内。当采用Al-20Ti合金作为钎料时, 随着中间层厚度从~100 μm减小至25 μm, 钎焊接头的平均强度逐渐提高, 且最大强度~315 MPa。同时, 钎焊中间层中(Al)相逐渐减少直至消失, 只留下Al4C3、TiC和(Al,Si)3Ti相。SiC/Al-20Ti/SiC钎焊接头的断裂主要发生在靠近中间层/陶瓷界面位置的陶瓷基体内。  相似文献   

12.
本研究提出一种Cf/SiC复合材料表面改性新方法为水基浆料涂覆结合原位反应烧结工艺。系统研究了SiC和炭黑在水基浆料中的共分散、粘结剂的量和浆料固含量对浆料流变性能的影响、涂层的微观结构和性能等。研究结果表明: 采用水基浆料涂覆工艺可在基材表面制备一层气孔率达49%的多孔C/SiC预涂层; 通过液相渗硅原位反应工艺, 多孔预涂层转变为高致密、与基材强结合的光学涂层, 并且在涂层与基材间形成了~ 15 μm的化学反应过渡层; Si/SiC涂层的维氏硬度为(14.19 ± 0.46) GPa, 断裂韧性为(3.02 ± 0.30) MPa·m1/2; 经过精细研磨抛光, 涂层的表面粗糙度可达2.97 nm RMS。  相似文献   

13.
本工作主要研究了残余相和晶粒尺寸对碳化硅的抗混酸(HF-HNO3)腐蚀特性。通过不同的烧结方法(固相烧结、液相烧结、反应烧结)制备出残余相不同的碳化硅材料。结果表明: 与液相烧结碳化硅(LPS SiC)和反应烧结碳化硅(RB SiC)相比, 固相烧结碳化硅(SSiC)具有更好的腐蚀抗性, 这是由于残余相石墨的抗腐蚀性强, 以及残余相在材料中形成不能相互联通的岛状结构。通过调节碳化硅的烧结温度, 可以影响材料中的晶粒尺寸, 研究结果发现相同烧结温度下随着残余相含量的增加, 材料腐蚀失重线性增加, 对曲线进行线性拟合, 其Y轴截距的绝对值代表不含碳的试样在该烧结温度下的腐蚀失重。研究表明随着烧结温度由2100℃升高到2160℃, 晶粒尺寸由2 μm增加到6 μm。此时其Y轴截距的绝对值分别为9.22(2100℃), 5.81(2130℃), 0.29(2160℃), 表明晶粒尺寸的增加有利于提高材料的抗腐蚀能力。  相似文献   

14.
本研究探讨了碳化硼原料颗粒尺寸对反应结合碳化硼复合材料相组成、结构与性能的影响。研究结果表明:颗粒级配可以使粉体堆积更加密实, 有效提高压制坯体的体积密度, 最终降低复合材料中游离Si的含量; 加入粗颗粒可减缓B4C与Si的反应, 减少SiC相的生成; 当原料中粒径为3.5、14、28、45 μm的B4C粉体按质量比为1.5 : 4 : 1.5 : 3配比时, 所制备的复合材料维氏硬度、抗弯强度、断裂韧性和体积密度分别为(29±5) GPa、(320±32) MPa、(3.9±0.2) MPa·m1/2和2.51 g/cm3。在制备复合材料过程中减缓B4C与Si反应速度、减少游离Si的含量和缩小Si区域尺寸是其性能升高的主要原因。  相似文献   

15.
固相烧结SiC(SSiC)陶瓷大多数用于结构陶瓷材料, 用于电子和电阻元器件的研究很少。实验以添加不同C含量的致密SSiC陶瓷材料为研究对象, 研究了添加不同C含量SSiC陶瓷的伏安特性、电阻率与电流密度的变化关系及电阻率与温度的变化关系。研究结果表明: SSiC陶瓷表现出明显的非线性电学特性, 其电阻率随着电流的增大而降低; 对于添加3wt% C含量的SSiC陶瓷, 当电场强度超过15.8 V/mm时, 晶界势垒被击穿; 对于添加6wt% C含量的SSiC陶瓷, 当电场强度超过70.7 V/mm时, 晶界势垒被击穿, 它们的电阻率将为晶粒所控制, 电阻率较小; 同时在电场强度1 V/mm条件下, SSiC陶瓷电阻率随着温度的升高而降低, 表现出很好热敏特性, 从常温的106 Ω·cm变化为400℃的5 Ω·cm左右。  相似文献   

16.
以采用水热法制备的BaTiO3粉体作为原料, 利用普通烧结法和两步烧结法制备出晶粒尺寸为0.25~10.15 μm的BaTiO3陶瓷, 研究了晶粒尺寸效应对BaTiO3陶瓷的介电、压电以及铁电性能的影响。结果表明: BaTiO3陶瓷的四方相含量随着陶瓷晶粒尺寸的增大而增加; 当晶粒尺寸在1 μm以上时, 室温相对介电常数(ε° )和压电系数(d33)随着晶粒尺寸的减小而增大, 并在晶粒尺寸为1.12 μm时分别达到最大值5628和279 pC/N, 然后两者随着晶粒尺寸的进一步减小而迅速下降。BaTiO3陶瓷的剩余极化强度Pr随晶粒尺寸的增大而提高, 而矫顽场Ec却呈现出相反的趋势。晶粒尺寸对介电性能和压电性能的影响是由于90°电畴尺寸和晶界数量的变化。晶粒的晶体场和晶粒表面钉扎作用的变化影响了电畴, 进而改变电滞回线。  相似文献   

17.
以AlN粉末为原料, 添加稀土氧化物(Sm2O3、Y2O3), 在氮气气氛下, 采用SPS烧结方法制备AlN陶瓷, 研究稀土氧化物的掺杂对AlN烧结试样相组成、微观结构和电性能的影响。实验表明: Sm2O3、Y2O3与Al2O3反应生成的液相稀土金属铝酸盐会提高AlN陶瓷致密度, 且在晶界处形成导电通路降低了AlN陶瓷电阻率。随着Sm2O3掺杂量的增加, 晶界相逐渐由Sm4Al2O9过渡到SmAlO3, 且Sm4Al2O9对电阻率贡献最大。其中, 3wt% Sm2O3掺杂AlN陶瓷电阻率最低, 为   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号