首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
智能网联车路云协同系统架构与关键技术研究综述   总被引:1,自引:0,他引:1  
丁飞  张楠  李升波  边有钢  童恩  李克强 《自动化学报》2022,48(12):2863-2885
随着汽车产业电动化、智能化、网联化、共享化的发展驱动,全球主要强国均将智能网联汽车列为国家战略发展方向.蜂窝车联网、边缘计算网络和高精度定位系统的技术发展,为车车、车路、车人和车云系统的全面融合提供了有效支撑.车辆、道路、云平台与蜂窝车联网(Cellular vehicle-to-everything, C-V2X)网络的融合,加速打通车内与车外、路面与路侧、云上与云间的信息互通,为实现车路云一体化的融合感知、群体决策及协同控制提供了重要基础.首先,梳理了智能网联车路云协同系统架构与关键技术,对该领域的演进特征、发展制约因素进行了总体概述;其次,阐述了新型车路云协同系统、智能网联C-V2X通信系统、云控系统和车路云协同测试系统的架构设计与工作原理;然后,从C-V2X组网、融合定位、测试评价角度,介绍了车路云协同系统融合V2X网络、融合定位的技术演进与研究进展,给出了智能网联场景的仿真平台、实车测试及评价指标;最后,对智能网联车路云协同系统的协同组网与控制、互操作、边缘智能服务和安全技术层面的发展趋势进行了展望.  相似文献   

2.
智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与车、路、人、云等信息共享,实现“安全、高效、舒适、节能”行驶。虽然该产业呈现出全面发展的良好局面,但回溯到核心技术层面,该领域仍面临若干技术调整,包括单车感知决策、车路协同、人机共驾、以及各类信息安全威胁。在此背景下,进行智能网联汽车科技创新至关重要。  相似文献   

3.
随着智能驾驶技术的研究与发展,单车智能感知的局限性逐渐显现出来,基于V2X的感知技术解决了单车感知在遮挡等场景下的局限性。介绍一种基于V2I/V2N的感知融合系统技术方案,阐述其在智能驾驶系统中发挥的作用。重点讨论路侧感知与车载感知融合技术的算法架构及功能,研究利用V2I/V2N技术搭建智能网联汽车感知系统的可行性,研究基于V2I/V2N的感知融合系统在前车跟车行驶场景、车辆穿越交叉路口场景、高速路匝道车辆汇入场景三种典型场景下的应用。可以为车路协同感知技术应用研究提供参考。  相似文献   

4.
随着车路协同系统技术的研究与发展,感知设备的可靠性、稳定性、高性价比、可大规模部署等要求被提出来。而毫米波雷达正是满足这一要求的器件。介绍了一种基于智能网联平台的车路协同的基本组成与架构,阐述其在交通系统中发挥的作用。重点讨论了毫米波雷达感知技术的原理与功能,研究以毫米波雷达为主要感知设备搭建车路协同系统的可行性,研究毫米波雷达技术在智能交叉路口、智能高速/快速公路、智能停车场三种车路协同场景下的应用。可为毫米波雷达技术在车路协同系统中的应用研究提供参考。  相似文献   

5.
《中国信息安全》2024,(2):48-49
<正>在“软件定义汽车”的时代背景下,车辆具备感知能力和网联能力,能够自我判断自身行驶的状态,并将其通过传感转换成数据。同时,“数字化的道路”将通过路侧单元(RSU)、摄像头等传感器将路况信息传输给车辆,为车辆提示最优路线。而“智慧通信”将融合感知、高精度定位、云计算技术,实现人、车、路之间的高效协同。智能网联汽车的高速发展,使得车联网的数据呈现爆炸式增长,数据安全随之成为车联网的发展的焦点问题。  相似文献   

6.
车城网全面整合了城市动静态信息,为车城融合应用建设提供了数据和基础设施。基于车城网,提出了智能网联车辆管理系统的设计方案,包含智能网联公交、车路协同信息服务、停车信息服务3方面主要内容,为市民提供智能公交、自动驾驶、全域停车信息、综合出行信息等创新交通服务,提升交通出行服务体验和满意度。  相似文献   

7.
汽车行业正在进行智能化与网联化的发展变革,智能网联汽车的出现使交通管理者找到缓解交通拥堵、提高道路安全以及减少能源消耗的一种解决方案.对此,调研混合交通流模型、智能网联汽车协同控制、交通管理等领域的最新成果,系统地论述基于车路云一体化的智慧交通系统优化控制的研究现状与进展.首先,分析基于车路云一体化的混合交通系统的框架,梳理各部分的组成与作用;其次,总结混合交通流的建模方法,探究交通现象本质,归纳各类方法的特点、优势以及局限性;再次,探讨混合交通系统优化控制问题,围绕交通流稳定性、交通安全、交通效率和绿色交通4个方面分析智能化与网联化在交通方面的潜能,并梳理在不同交通场景下的控制对象与控制目标,总结具有借鉴意义的控制方法;最后,对车路云一体化发展进程中存在的问题与挑战进行总结,并对未来发展指明方向.  相似文献   

8.
车路协同的云管边端架构及服务研究   总被引:2,自引:0,他引:2  
对智能交通业务的发展趋势、车路协同技术及系统要求以及国内外发展现状进行了介绍;同时重点阐述了智能网联交通体系之车路协同云管边端架构方案,介绍了中心云、交通专网/电信网络、边缘云、车载/路侧终端协同的"云-管-边-端"统一架构,同时提出了基于云管边端架构的车路协同多源数据融合信息服务能力开放框架,并对其具体功能要求、API调用方式进行了详细论述。  相似文献   

9.
矿井辅助运输系统是煤矿企业运输人员和重要物料、装备的必备系统,实现矿井无人驾驶是提高运输效率、保障运输安全的必然要求,也是落实国家煤矿智能化建设部署的必由之路。矿井无人驾驶依赖于准确实时的环境感知,即利用激光雷达、毫米波雷达等车载感知器件和车联网支持下的协同感知,实现车辆局部甚至矿井全局的精确详尽感知。对矿井无人驾驶环境感知技术的研究现状进行了系统梳理,指出巷道特殊环境使得矿井车载感知设备的性能都将出现不同程度的下降,并对各种车载感知设备的优劣进行了总结归纳;详细阐述了矿井无人驾驶环境感知的关键技术,包括基于可见光图像或激光点云的单传感器障碍物识别方法,多传感器融合感知的分类及可见光图像+激光点云、可见光图像+毫米波点云、可见光图像+激光点云+毫米波点云、4D毫米波雷达+其他感知器件等多传感器融合方式,智能网联协同感知的实现方式、数据处理方法及其对无人驾驶的促进作用,井下巷道交通标志检测与识别方法,井下无轨胶轮车和有轨机车的巷道可行驶区域分割方法等;对矿井无人驾驶环境感知技术的发展方向进行了展望,建议提高矿井多传感器融合性能、研究矿井自适应感知算法并突破矿井智能网联协同感知技术。  相似文献   

10.
0 引言 物联网和智能电动汽车技术的快速发展给传统汽车行业带来了颠覆性变革,赋予了汽车"电动化、智能化、网联化、共享化"的特点,而融合了5G、人工智能、物联网等技术的自动驾驶则实现了车与人、车、道路、云端等的信息交换和共享,通过在汽车上搭载车辆传感器、智能控制器等装置,使汽车具备环境感知、智慧决策、协同控制、危险预警等功能,让人们的驾驶体验更加智能、安全、高效、舒适.汽车行业的数字化时代已经到来,自动驾驶的生态系统正在逐渐形成,商业化进程也在不断提速.  相似文献   

11.
随着全球人口的持续增长和城市化进程的加速,道路拥挤、交通事故和污染排放增加等问题日益严重。智慧交通系统旨在借助先进的信息与通信技术建成高效安全、环保舒适的交通与运输体系,提供全方位的交通信息服务和安全高效、经济快捷的交通运输与出行服务。经过各国多年来的竭力推进与发展,智慧交通系统在交通管理、自动驾驶与车路协同等方向均得到广泛的应用。智慧交通的发展离不开通信、计算机与控制等研究方向的突破与创新。其中,图像处理作为智慧交通系统的核心技术之一,它的研究进展直接影响着智慧交通系统的部署。图像处理技术是指计算机对图像进行增强、复原、提取特征、分类和分割等技术处理,通过对交通视觉图像的处理,为智慧交通系统的感知、识别、检测、跟踪和路径规划等功能提供了最直接与重要的信息。此外,面对智慧交通系统所产生的大量数据计算任务,边缘计算技术则将中心云服务下沉至各边缘节点附近,不但能够优化算力负载分配,还能够满足智慧交通应用与服务对低时延、高响应速度的需求。本文从智慧交通系统的发展现状入手,分别围绕面向智慧交通的图像处理与边缘计算技术,阐述其研究热点与前沿进展,汇总与比较国内外的相关学术和产业成果,并对智慧交通...  相似文献   

12.
郭戈  许阳光  徐涛  李丹丹  王云鹏  袁威 《控制与决策》2019,34(11):2375-2389
网联车辆、交通大数据、共享出行等技术给智能交通系统的发展与应用革新带来了机遇和挑战.在全面总 结共享出行系统、网联车辆协同优化控制、交通大数据分析等领域最新研究成果的基础上,系统论述智能交通技术的研究进展,特别对智能交通系统中的交通流及出行需求预测、共享出行系统车辆调度、交通网及电网联合优化、网联车辆协调控制及车-路协同控制等方面进行全面综述.分析智能交通系统存在的问题及挑战,并对其未来发展方向进行展望.  相似文献   

13.
面向智能驾驶测试的仿真场景构建技术综述   总被引:1,自引:0,他引:1       下载免费PDF全文
随着汽车智能化程度的不断提高,智能汽车通过环境传感器与周边行驶环境的信息交互与互联更为密切,需应对的行驶环境状况也越来越复杂,包括行驶道路、周边交通和气象条件等诸多因素,具有较强的不确定性、难以重复、不可预测和不可穷尽。限于研发周期和成本、工况复杂多样性,特别是安全因素的考虑,传统的开放道路测试试验或基于封闭试验场的测试难以满足智能驾驶系统可靠性与鲁棒性的测试要求。因此,借助数字虚拟技术的仿真测试成为智能驾驶测试验证一种新的手段,仿真场景的构建作为模拟仿真的重要组成部分,是实现智能驾驶测试中大样本、极限边界小概率样本测试验证的关键技术,这对提升智能驾驶系统的压力和加速测评水平显得尤为重要。面向智能驾驶测试的仿真场景构建技术已成为当前汽车智能化新的研究课题和世界性的研究热点,作为一种新兴技术仍面临许多挑战。本文提出了面向智能驾驶测试的仿真场景构建方法,系统阐述了国内外研究工作的进展与现状,包括场景自动构建方法和交通仿真建模方法,重点分析一些值得深入研究的问题并围绕场景构建技术的发展趋势进行了讨论分析,最后介绍了团队相关研究在2020中国智能驾驶挑战赛仿真赛和世界智能驾驶挑战赛的仿真场景应用情况。  相似文献   

14.
多传感器融合技术已经广泛应用在智能汽车环境感知领域中;雷达和摄像机的空间标定是伴随信息实时融合的道路检测技术的基础;结合智能汽车的实际应用,提出了针对激光雷达和摄像机的空间标定方法;通过特制的标定板来获得雷达数据和图像数据,选取激光雷达坐标系作为世界坐标系,通过参数拟合的方法来求取图像坐标系与雷达坐标系的变换关系,进而实现两种传感器的空间配准;该方法只需要标定板就能够完成激光雷达和摄像机的空间标定,标定精度高,实现了多个传感器世界坐标系的统一,避免了后续处理中数据解释的二义性;实验结果表明这种方法简单准确,满足系统要求。  相似文献   

15.
交通流数据是进行交通管理宏观决策的基础数据,交通流数据采集系统是交通管理信息化智能化的重要组成部分;随着我国交通领域的蓬勃发展,交通流量激增、高速交通拥堵、交通事故等突发事件频发,为此,设计一套实时性好、准确度高的交通流数据采集系统是十分必要的;文章基于雷视一体机开发了一套高速公路交通流数据采集系统,采用端-边-云分级传输的物联网架构,并结合了自主研发的雷视一体机,采用CNN神经网络技术提取图像信息后,在边缘计算机中通过一维数据最优估计、多传感器数据匹配、多传感器双向最优估计、多传感器目标特征融合的软件工作流程,将雷达与监控相机提取到的信息进行最优化估计,准确提取道路目标交通信息,仅将处理后的特征信息上传至云端服务器,实现交通流数据的精确、实时采集;系统试运行结果表明,该基于雷视一体机的交通流数据采集系统能够有效提高检测准确性,加强检测结果的实时性。  相似文献   

16.
With the rapid development of urban, the scale of the city is expanding day by day. The road environment is becoming more and more complicated. The vehicle ego-localization in complex road environment puts forward imperative requirements for intelligent driving technology. The reliable vehicle ego-localization, including the lane recognition and the vehicle position and attitude estimation, at the complex traffic intersection is significant for the intelligent driving of the vehicle. In this article, we focus on the complex road environment of the city, and propose a pose and position estimation method based on the road sign using only a monocular camera and a common GPS (global positioning system). Associated with the multi-sensor cascade system, this method can be a stable and reliable alternative when the precision of multi-sensor cascade system decreases. The experimental results show that, within 100 meters distance to the road signs, the pose error is less than 2 degrees, and the position error is less than one meter, which can reach the lane-level positioning accuracy. Through the comparison with the Beidou high-precision positioning system L202, our method is more accurate for detecting which lane the vehicle is driving on.  相似文献   

17.
城市道路交通的路段信息与车流量信息对道路交通的安全、高效运行至关重要.在交通高峰时期,通过对关键路段加以控制,可实现整个道路交通网络的完全能控.为寻找路网中的关键路段,将道路网络的交叉口-节点模型转化为道路网络的路段-节点模型,基于路段信息与车流量信息提出拥堵系数来衡量道路交通网络的车辆拥堵程度,并将其作为道路网络的路段-节点模型的边权重,最后运用关键路段辨识算法对道路交通网络的关键路段进行辨识.以沈阳市皇姑区主城区道路为例建立以拥堵系数为权重的网络模型, 按照所提方法辨识的关键路段数量为14条,约占道路网络总路段数的14.3%,具有较低的控制成本,且大部分为由北向南方向和由西向东方向.其中8条路段分布在皇姑区道路实时拥堵排行前5名,约占关键路段总数的57.1%,表明所给出的关键路段更多地分布在交通状态较为拥堵的路段上,符合实际情况.  相似文献   

18.
We propose a new cooperative fusion approach between stereovision and laser scanner in order to take advantage of the best features and cope with the drawbacks of these two sensors to perform robust, accurate and real time-detection of multi-obstacles in the automotive context. The proposed system is able to estimate the position and the height, width and depth of generic obstacles at video frame rate (25 frames per second). The vehicle pitch, estimated by stereovision, is used to filter laser scanner raw data. Objects out of the road are removed using road lane information computed by stereovision. Various fusion schemes are proposed and one is experimented. Results of experiments in real driving situations (multi-pedestrians and multi-vehicles detection) are presented and stress the benefits of our approach.Raphaël Labayrade was born in France, in 1976. He received the M.S. degree in 2000 from the university of Saint Etienne, and he was also graduate from the ENTPE engineer school in 2000. In 2004 he received the Ph.D. degree from the university Pierre et Marie Curie Paris VI. In his thesis he proposed a new approach for detecting road obstacles using stereovision in a generic, fast and robust manner.He is currently a researcher at INRETS since 2004 in the perception team of the LIVIC department and works on automated highway and on on-board driving assistance systems. His main work deals with obstacles detection using data fusion but he is also interested in road lane recognition. He is involved for vision tasks in various european and french projects dealing with intelligent vehicles (Carsense, Micado, Arcos). He teaches at Jussieu (Paris VI), Ecole Nationale des Ponts et Chaussées, University of Versailles.He is the author and co-author of several technical papers.Cyril Royere was born in France, in 1972. He received the M.S. degree in 1995 from the university of Reims. In 2002 he received the Ph.D. degree from the university of Technology of Compiegne. In his thesis, he describes the origins of the conflict which appears when combining of various sources of imperfect information within the framework of the belief theory. Since 2002, he is a researcher at INRETS, into the perception team of the LIVIC department (Laboratory on interactions between vehicles, Infrastructure and drivers) and works on automated highway and on on-board driving assistance systems. His main work deals with obstacles detection using data fusion. He is involved for multi-sensor fusion tasks in several European and French projects dealing with intelligent vehicles (CARSENSE, MICADO, ARCOS).He is the author and co-author of several technical papers.Dominique Gruyer was born in France, in 1969. He received the M.S. and Ph.D. degree respectively in 1995 and 1999 from the university of Technology of Compiëgne.Since 2001, he is a researcher at INRETS, into the perception team of the LIVIC department (Laboratory on interactions between vehicles, Infrastructure and drivers) and he works on the study and the development of multi-sensor/sources association, combination and fusion. His works enter into the conception of on-board driving assistance systems and more precisely on the carry out of multi-obstacle detection and tracking, extended perception, accurate localization, anti-collision system, collision mitigation. He is involved for multi-sensor fusion tasks in several European and French projects dealing with intelligent vehicles (CARSENSE, MICADO, ARCOS). He is a multi-sensor fusion expert for several companies, teaches at Orsay (Paris XI), Ecole Nationale des Ponts et Chaussées and University of Technologie of Compiëgne.He is the author and co-author of several technical papers.Didier Aubert was born in France, in 1963. He received the M.S. and Ph.D. degree respectively in 1985 and 1989 from the university of Grenoble. From 1989–1990, he worked as a research scientist on the development of an automatic road following system for the NAVLAB at Carnegie Mellon University. From 1990–1994, he worked in the research department of a private company (ITMI). During this period he was project leader of several projects dealing with computer vision (Multi-resolution, color, motion detection, 3D reconstruction, 3D location, Shape recognition, automatic shape modelling, object tracking), mobile robotic (calibration, roads following, free space computation) and manipulator robotic (calibration, automatic surface tracking). He was also working as an expert for companies on the face recognition, 3D location and roads following topics. He is currently a researcher at INRETS since 1995, manages the perception team of the LIVIC department and works on car traffic monitoring, crowd monitoring, incidents detection, automated highway and on on-board driving assistance systems. He is an image processing expert for several compagnies, teaches at Jussieu (Paris VI), Ecole Nationale des Ponts et Chaussées, Ecole Nationale Supérieure des Télécommunications, Orsay (Paris XI) and is at the editorial board of RTS (Research-Transport-Safety).He is the author and co-author of several technical papers and has participated to the redaction of the books named “Robotique mobile” and “la route automatisée.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号