共查询到19条相似文献,搜索用时 112 毫秒
1.
聚偏氟乙烯(PVDF)是一种性能优良的膜材料,被广泛用于溶液的净化、分离、浓缩过程.但由于它的疏水性,膜在分离过程中极容易受到蛋白质等有机物的污染,会导致膜通量下降,使用寿命缩短.为提高膜的性能,将经过γ-氨丙基三乙氧基硅烷改性的纳米SiO2粒子填充到聚偏氟乙烯铸膜液中,通过溶胶-凝胶法制得复合膜,并对该膜的形貌、韧性、亲水性和中水处理的性能进行了表征.结果表明,改性的纳米SiO2能够在膜内均匀分散,使复合膜的韧性显著提高,在处理中水过程中纳米SiO2粒子与PVDF结合良好;膜的接触角由83°下降到41°,通量相对稳定,在0.1 MPa操作压力下通量维持在280 L/(m2.h),表明复合膜的耐污染能力大大增强. 相似文献
2.
3.
聚合物共混对聚偏氟乙烯超滤膜结构与性能的影响 总被引:1,自引:0,他引:1
根据聚合物共混焓变、绝对黏度及凝胶点值,考察了4种聚合物(聚乙烯醇(PVA)、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、聚甲基丙烯酸甲酯(PMMA))与聚偏氟乙烯(PVDF)/N,N-二甲基乙酰胺(DMAc)铸膜液体系的共混相容性。利用凝胶相转化动力学及原子力显微镜(AFM)、扫描电镜(SEM)、亲水接触角和泡点压力等检测手段,分析了水凝胶浴中4种添加剂对PVDF超滤膜成膜过程及膜结构与性能的影响。结果显示,4种添加剂与PVDF/DMAc的共混相容性顺序为PEG>PVP>PVA>PMMA。共混体系均以液液分相为主;其中PEG、PVP共混PVDF体系以瞬时分相为主,膜内部有大孔,表皮层及支撑层较为致密。PMMA和PVA共混PVDF体系有延时分相和液固分相行为,膜表面多孔、内部有大孔且亚层疏松。共混优化了PVDF超滤膜结构。PVA能有效提高膜亲水性能。 相似文献
4.
5.
6.
对聚偏氟乙烯(PVDF)/聚甲基丙烯酸甲酯(PMMA)共混物的老化性能进行了研究,对试样进行湿热老化和紫外老化的加速老化实验,得到了拉伸强度和色差值随老化时间的变化规律。结果表明:在湿热老化过程中,拉伸强度随时间的延长先增加后减小,且PVDF与PMMA的质量比为70∶30时最大,但此时材料脆性太大;而在老化121 d后,随PM-MA含量的增加,试样的熔融指数增加;在老化152 d内,四组试样色差值ΔE<1.5,属于可接受的范围。同样两组薄膜样品在紫外光老化实验中,拉伸强度先增大后减小,且在紫外老化的1040h内,色差值ΔE<1,耐紫外效果较好。 相似文献
7.
采用溶液共混法制备聚偏氟乙烯/聚己二酸丁二醇酯(PVDF/PBA)复合薄膜,通过偏光显微镜、扫描电子显微镜、差示扫描量热仪和傅里叶变换红外光谱研究了复合体系在不同的共混比例的形貌和晶体结构变化,通过TF Analyzer2000分析了PBA组分的加入对复合体系电性能的影响。结果表明:α型PVDF环带球晶的环带间距随着体系内PBA含量的增多而增大,并且同一球晶外延的环带间距大于球晶中心位置的环带间距;PBA的加入促进了γ-PVDF晶体的生成,PVDF/PBA复合材料具有较高的矫顽场和剩余极化强度。 相似文献
8.
9.
采用悬浮法合成了含氯量为1.O%~16.3%的氯化聚偏氟乙烯并考察了其性能。聚偏氟乙烯(PVDF)经氯化改性后,其结晶性与粘度下降,而溶解度和附着力增加。从而克服了PVDF不溶于普通溶剂、对基材的附着力差且需高温烘烤等缺点,扩大了PVDF在涂料领域的应用范围。 相似文献
10.
采用溶液相转化法制备了羽绒粉体/聚偏氟乙烯(PVDF)和苎麻粉体/PVDF复合微孔膜,对膜结构和性能进行了分析和测试。结果显示苎麻粉体/PVDF复合膜、羽绒粉体/PVDF复合膜、纯PVDF膜的形态一致,均为致密皮层和多孔亚层,孔隙率和水通量依次降低,结晶度依次增加;但膜的吸水率按照羽绒粉体/PVDF复合膜、苎麻粉体/PVDF复合膜、纯PVDF膜依次下降;这说明复合膜水通量主要受孔隙率的影响,而膜吸水率主要受纤维粉体吸水性大小的影响。膜力学性能测试显示加入粉体之后,PVDF膜的强度增加,断裂伸长率有所下降。 相似文献
11.
低温共熔盐0.434LiNO3-0.266LiOH·H2O-0.3CH3COOLi·2H2O在80~90℃范围实现很好的熔融态。采用这种低温共熔盐制备出了锂离子电池正极材料LiNi0.8Co0.2O2,XRD检测显示材料结晶度高,具有规整的层状α-NaFeO2结构,SEM扫描显示样品形貌均一,颗粒大小均匀。充放电测试表明,材料具有良好的电化学性能,在2.8~4.3V电压范围0.2C首次放电比容量为174.1mAh/g,循环20次后容量保留95%。 相似文献
12.
以二次干燥化学共沉淀法制得高密度前驱体Ni0.8Co0.2(OH)2,再与LiNO3混合经两个恒温阶段烧结(600℃恒温6h、800℃恒温24h)得到高密度LiNi0.8Co0.2O2.探讨了锂源、镍源、合成温度、合成时间等因素对产品的影响,从而优化了LiNi0.8Co0.2O2的合成工艺.所得非球形LiNi0.8Co0.2O2 粉末振实密度高达3.24g/cm3,大幅度地提高正极材料的体积比能量.X射线衍射分析表明合成的LiNi0.8Co0.2O2具有规整的层状NaFeO2结构,预示着材料具有良好的电化学性能. 相似文献
13.
14.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。 相似文献
15.
为研究新型负温度系数(NTC)热敏陶瓷材料,采用以聚乙烯醇为聚合剂的湿化学法制备了BaTi0.8Co0.2O3粉体、用传统烧结方法制得陶瓷材料。通过X射线衍射分析了材料的晶体结构,利用电阻-温度特性测试仪研究了材料的电子导电性随温度的变化特性。结果发现,该材料具有六方晶系结构,电阻-温度特性具有明显的NTC效应。Co的掺入以及形成共面氧八面体使得钙钛矿型BaTiO3基陶瓷形成六方晶系结构;电子受热激活在Co3+/Co2+之间跃迁是材料呈现NTC效应的主要机制。 相似文献
16.
采用冷冻干燥技术成功合成了层状锂离子电池正极材料LiNi0.8Co0.2O2,研究了不同煅烧温度对产物结构、微观形貌以及性能的影响.利用TG-DTA分析、X射线衍射(XRD)、场发射扫描电镜(FESEM)和激光粒度分析仪对前驱体和煅烧样品的热反应、晶体结构、微观形貌和粒度分布等进行了表征.结果表明,煅烧温度对LiNi0.8Co0.2O2晶体结构及材料性能有较大影响.750℃×5h的煅烧条件下制得的LiNi0.8Co0.2O2粉具有纳米级尺寸和窄的粒度分布,该样品的(003)晶面衍射峰强度与(104)晶面衍射峰的强度比I(003)/I(104)为1.51.晶格参数显示制得的LiNi0.8Co0.2O2样品用作锂离子电池的电极,可能会显示出良好的电化学性能. 相似文献
17.
制备了4.6V高截至电压下具有良好循环表现的AlF_3包覆改性LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料,通过XRD、SEM、交流阻抗(IMP)分析、充放电测试研究了不同用量AlF_3包覆LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的结构与电化学性能.结果表明,AlF_3以非晶态形式包覆于LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料颗粒的表面.当包覆量<1.0%(摩尔分数,下同)时,AlF_3包覆导致轻微的初始容量损失,但显著抑制了高充电电压下膜阻抗和电荷传递阻抗的增加,较好改善了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料的循环稳定性;当包覆量达到2.0%以上时,因AlF_3无电化学活性,使得初始容量损失过大.综合各方面表现,0.5%AlF_3包覆样品的电化学性能较佳,2.5~4.6V范围0.5C放电容量为182.2mAh·g~(-1),循环30次后容量保持率达88.1%. 相似文献
18.
LiNi0.75Al0.25O2的制备与性能 总被引:2,自引:1,他引:2
LiNi0.75Al0.25O2是很有希望取代LiCoO2的新一代锂离子电池正极材料。采用球形Ni(OH)2和LiNo3、Al(OH)3为原料,空气气氛条件下700℃恒温8h合成了锂离子电池正极材料LiNi0.75Al0.25O2。X衍射分析表明合成的LiNi0.75Al0.25O2粉末结晶良好,具有规整的α—NaFeO2层状结构,扫描电镜分析表明粉末颗粒呈球形,粒径约为7μm。充放电测试表明,合成的LiNi0.75Al0.25O2正极材料具有优良的电化学性能。 相似文献
19.
采用溶胶-凝胶旋转包覆法在玻璃衬底上制备了CO0.8Fe2.2O4薄膜.用振动样品磁强计和X射线衍射仪对样品的磁性和结构进行了室温及高温原位测量;用X射线光电子能谱仪和原子力显微镜测量了样品的成分及表面形貌.室温测量结果表明,400%退火时,样品已生成单一的尖晶石相,随退火温度升高衍射峰增高.样品的晶粒尺寸较小(14.2~29.6 nm),有利于降低磁记录材料的晶界噪音.630%退火样品的矫顽力达到1.56 X 105A·m-1.高温原位测量发现,500%高温时线膨胀系数约为1.3 X 10-5K-1,显示样品结构的热稳定性非常好,适合于磁光记录过程.随温度升高,样品由亚铁磁性逐渐过渡到顺磁性. 相似文献