首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of strain rate on the mechanical properties and failure mechanism of AA5754 and AA5182 sheets were investigated. Tensile tests were conducted at quasi-static (less than 10−1 s−1) and dynamic (600, 1100 and 1500 s−1) strain rates at room and elevated temperature using an INSTRON machine and Tensile Split Hopkinson Bar (TSHB) apparatus, respectively. Shear band decoration, interrupted tensile tests, electron microscopy, and image analysis techniques were also utilized. The results obtained show that the studied alloys exhibit negative strain rate sensitivity at quasi-static rates, but mild positive sensitivity at dynamic rates. Different failure mechanisms were also observed. Strain localization and shear band formation was found to be a necessary pre-requisite for the development of damage and final failure under quasi-static conditions. In the dynamic strain rate regime however, less shear banding was observed. Void nucleation, growth and coalescence that is characteristic of dynamic tensile fracture appears to be the dominant mode for failure under dynamic conditions.  相似文献   

2.
The final objective of this study is to improve the mechanical behaviour of composite sandwich structures under dynamic loading (impact or crash). Cellular materials are often used as core in sandwich structures and their behaviour has a significant influence on the response of the sandwich under impact. Syntactic foams are widely used in many impact-absorbing applications and can be employed as sandwich core. To optimize their mechanical performance requires the characterisation of the foam behaviour at high strain rates and identification of the underlying mechanisms.Mechanical tests were conducted on syntactic foams under quasi-static and high strain rate compression loading. The material behaviour has been determined as a function of two parameters, density and strain rate. These tests were complemented by experiments on a new device installed on a flywheel. This device was designed in order to achieve compression tests on foam at intermediate strain rates. With these test machines, the dynamic compressive behaviour has been evaluated in the strain rate range up [6.7 · 10−4 s−1, 100 s−1].Impact tests were conducted on syntactic foam plates with varying volume fractions of microspheres and impact conditions. A Design of Experiment tool was employed to identify the influence of the three parameters (microsphere volume fraction, projectile mass and height of fall) on the energy response. Microtomography was employed to visualize in 3D the deformation of the structure of hollow spheres to obtain a better understanding of the micromechanisms involved in energy absorption.  相似文献   

3.
The polyethylene non-woven felt, Dyneema Fraglight, has excellent capabilities to stop bomb fragments. According to the manufacturer, a felt with an areal density of 1.2 kg/m2 stops a 17-grain projectile at 450 m/s. The research presented in this paper aims at improving our understanding of how non-woven felts work. Static tensile tests were performed at different strain rates and temperatures. The static tensile tests showed that there is an important size effect: the strength of the specimens decreases when increasing the size of the specimen, for lengths of 5 cm or less. This effect is expected since the felt is made by mixing, combing and needle punching of 5-cm-long fibers. The tests also showed that the felt is anisotropic and that at a temperature of 100 °C it loses a significant part of both its strength and strain to failure. Tensile tests at medium (1 s−1) and high strain rates (1000 s−1) did not show any evidence of strain rate dependence. Out-of-plane punching tests, designed to help with the modeling, were also performed and the results are presented.  相似文献   

4.
High temperature deformation behavior of a near alpha Ti600 titanium alloy   总被引:2,自引:0,他引:2  
The high temperature deformation behavior of a near alpha Ti600 titanium alloy was investigated with isothermal compression tests at temperatures ranging from 800 to 1000 °C and strain rates ranging from 0.001 to 10.0 s−1. The apparent activation energy of deformation was calculated to be 620.0 kJ mol−1, and constitutive equation that described the flow stress as a function of the strain rate and deformation temperature was proposed for high temperature deformation of Ti600 titanium alloy in the α + β phase region. The processing map was calculated to evaluate the efficiency of the forging process in the temperatures and strain rates investigated and to recognize the instability regimes. High efficiency values of power dissipation over 55% obtained under the conditions of strain rate lower than 0.01 s−1 and temperature about 920 °C was identified to represent superplastic deformation in this region. Plasticity instability was expected in the regime of strain rate higher than 1 s−1 and the entire temperature range investigated.  相似文献   

5.
This study focuses on the ballistic performances of 1 and 2 mm-thick and 2 × 1 mm-thick cold rolled sheet metal plates against 9 mm standard NATO projectile. The velocity of the projectile before and after perforation, the diameter of the front face deformation, the depth of the crater and the diameter of the hole were measured. The fracture surfaces of the plates near the ballistic limit were also microscopically analyzed. The highest ballistic limit was found in 2 mm-thick plate (332 m s−1) and the lowest in 1 mm-thick plate (97 m s−1). While, the ballistic limit of 2 × 1 mm-thick plate decreased to 306 m s−1. Typical failure mechanism of the projectile was the flattening and mushrooming at relatively low velocities and the separation from the jacket at relatively high velocities. In accord with the ballistic limits, 2 mm-thick target plate exhibited the highest hardness value. Microscopic investigations showed the significant reductions in the grain size of the targets after the test.  相似文献   

6.
The tensile behavior of a newly developed Ti–6Al–2Sn–2Zr–3Mo–1Cr–2Nb–Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s−1. The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s−1, a discontinuity is found in the yield stress–temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.  相似文献   

7.
Effects of temperature and strain rate on the cohesive relation for an engineering epoxy adhesive are studied experimentally. Two parameters of the cohesive laws are given special attention: the fracture energy and the peak stress. Temperature experiments are performed in peel mode using the double cantilever beam specimen. The temperature varies from −40 to + 80°C. The temperature experiments show monotonically decreasing peak stress with increasing temperature from about 50 MPa at −40°C to about 10 MPa at + 80°C. The fracture energy is shown to be relatively insensitive to the variation in temperature. Strain rate experiments are performed in peel mode using the double cantilever beam specimen and in shear mode, using the end notch flexure specimen. The strain rates vary; for peel loading from about 10−4 to 10 s−1 and for shear loading from 10−3 to 1 s−1. In the peel mode, the fracture energy increases slightly with increasing strain rate; in shear mode, the fracture energy decreases. The peak stresses in the peel and shear mode both increase with increasing strain rate. In peel mode, only minor effects of plasticity are expected while in shear mode, the adhesive experiences large dissipation through plasticity. Rate dependent plasticity, may explain the differences in influence of strain rate on fracture energy between the peel mode and the shear mode.  相似文献   

8.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

9.
Nano-sized Ar bubbles give negative influence on the fracture resistance and occurrence of superplasticity in ultra-fine grained (UFG) W–TiC compacts. In order to enhance deformability in UFG, Ar-contained W–TiC compacts, effects of TiC addition on the high-temperature deformation behavior were examined. W–TiC compacts with TiC additions of 0, 0.25, 0.5, 0.8 and 1.1 wt% were fabricated by mechanical alloying in a purified Ar atmosphere and hot isostatic pressing. Tensile tests were conducted at 1673–1973 K (0.45–0.54 Tm, Tm: melting point of W) at initial strain rates from 5 × 10−5 to 5 × 10−3 s−1. It is found that as TiC addition increases, the elongation to fracture significantly increases, e.g., from 3 to 7% for W–0 and 0.25TiC/Ar to above 160% for W–1.1TiC/Ar when tested at 1873 and 1973 K at 5 × 10−4 s−1. The flow stress takes a peak at 0.25%TiC and decreases to a nearly constant level at 0.5–1.1%TiC. The ranges of the strain rate sensitivity of flow stress, m, and the activation energy for deformation, Q, with TiC additions are 0.17–0.30 and 310–600 kJ/mol, respectively. The observed effects of the TiC additions on the tensile properties are discussed.  相似文献   

10.
Superelastic property of shape memory alloys (SMAs) is becoming increasingly important for impact applications due to their large recoverable strains and high capacity to dissipate energy. In this work, tensile behavior of superelastic NiTi SMA wires at impact strain rates was studied by instrumented tensile-impact technique, which allows to obtain material properties on the order of 1–102 s−1. The results show that even at impact strain rates, martensite can be induced by tension in NiTi. At impact, a plateau stress appears during transformations similar to that at quasi-static strain rates, but 100–150 MPa higher in stress. This is due to the higher temperatures achieved during the deformation due to the close to adiabatic nature of the impact event. The influence of the strain rate over the mechanical behavior of NiTi was spread to the quasi-static strain rates so that the evolution of several parameters was also studied on the range 10−5–102 s−1. Therefore, forward stress-induced martensitic (SIM) transformation stresses (σMs and σMf) and deformation energy (Ed) increase with strain rate, but they are strain rate independent from 10−1 s−1 at least until 102 s−1. Reverse SIM transformation stresses (σAs and σAf), recoverable strain energy (Er), and dissipated energy (Wd) depend mainly on maximum strain achieved during the deformation, but for strains corresponding to a load–unload cycle with complete SIM transformation, σAs, σAf and Er are higher at impact than at quasi-static strain rates, and Wd shows similar values at very low strain rates and at impact.  相似文献   

11.
Microstructure and superplastic properties of the plates extruded from the Ca containing Mg alloy (1 wt.% Ca–AZ31) billets fabricated by electromagnetic casting (EMC) without and with electromagnetic stirring (EMS) were examined. The linear intercept grain sizes of the extruded materials were 3.7 μm and 2.1 μm, respectively. The material extruded from the EMC + EMS billet exhibited good superplasticity at low temperatures as well as at high strain rates, including the tensile elongations of 370% at 1 × 10−3 s−1, −523 K and 550% at 1 × 10−2 s−1, −673 K. These values largely exceeded those of the AZ31 alloys with the similar grain sizes. The superior superplasticity of the extruded EMC + EMS billet could be attributed to fine grains and high grain stability at elevated temperatures by the presence of finely dispersed particles of thermally stable (Al,Mg)2Ca phase. The constitutive equations were developed for describing the high-temperature deformation behavior of the fine-grained 1 wt.% Ca–AZ31 alloys with different grain sizes in wide range of temperature and strain rate.  相似文献   

12.
The hot deformation behavior and microstructure evolution of twin-roll-cast of Mg–2.9Al–0.9Zn–0.4Mn (AZ31) alloy has been studied using the processing map. The tensile tests were conducted in the temperature range of 150–400 °C and the strain rate range of 0.0004–4 s−1 to establish the processing map. The different efficiency domains and flow instability region corresponding to various microstructural characteristics have been identified as follows: (i) the continuous dynamic recrystallization (CDRX) domain in the range of 200–280 °C/≤0.004 s−1 with fine grains which provides a potential for warm deformation such as deep drawing; (ii) the discontinuous dynamic recrystallization (DDRX) domain around 400 °C at high strain rate (0.4 s−1 and above) with excellent elongation which can be utilized for forging, extrusion and rolling; (iii) the grain boundary sliding (GBS) domain at slow strain rate (below 0.004 s−1) above 350 °C appears abundant of cavities, which result in fracture and reduce the ductility of the adopted material; and (iv) the flow instability region which locates at the upper left of the processing map shows the metallographic feature of flow localization.  相似文献   

13.
The ballistic performance edge clamped 304 stainless-steel sandwich panels has been measured by impacting the plates at mid-span with a spherical steel projectile whose impact velocity ranged from 250 to 1300 m s−1. The sandwich plates comprised two identical face sheets and a pyramidal truss core: the diameter of the impacting spherical projectile was approximately half the 25 mm truss core cell size. The ballistic behavior has been compared with monolithic 304 stainless-steel plates of approximately equal areal mass and with high-strength aluminum alloy (6061-T6) sandwich panels of identical geometry. The ballistic performance is quantified in terms of the entry and exit projectile velocities while high-speed photography is used to investigate the dynamic deformation and failure mechanisms. The stainless-steel sandwich panels were found to have a much higher ballistic resistance than the 6061-T6 aluminum alloy panels on a per volume basis but the ballistic energy absorption of the aluminum structures was slightly higher on a per unit mass basis. The ballistic performance of the monolithic and sandwich panels is almost identical though the failure mechanics of these two types of structures are rather different. At high impact velocities, the monolithic plates fail by ductile hole enlargement. By contrast, only the proximal face sheet of the sandwich plate undergoes this type of failure. The distal face sheet fails by a petalling mode over the entire velocity range investigated here. Given the substantially higher blast resistance of sandwich plates compared to monolithic plates of equal mass, we conclude that sandwich plates display a potential to outperform monolithic plates in multi-functional applications that combine blast resistance and ballistic performance.  相似文献   

14.
The effect of various strain rates on the tensile behavior of a single crystal nickel-base superalloy was studied. Single crystals with 0 0 1 crystal orientation were tested at 800 and 1000 °C under three kinds of strain rate of 10−3, 10−4 and 6 × 10−5 s−1. The yield strength increased with the increase of strain rate, while the configuration of the stress–strain curves was independent of strain rate. Additionally, fracture surface was related to strain rate at two temperatures. At 800 °C the amount of cleavage surface was different at three strain rates, which resulted from the difference of activated slip systems. The elongation increased with the decrease of strain rate, which was influenced by the heterogeneous ductile deformation. At 1000 °C the difference of fracture surface was attributed to the microvoid at higher strain rate, while the γ/γ′ interfaces also played an important role at lower strain rate; elongation rate was independent of strain rate.  相似文献   

15.
The experimental stress–strain data from isothermal hot compression tests, in a wide range of temperatures (1123–1523 K) and strain rates (10−3–102 s−1), were employed to develop constitutive equations in a Ti-modified austenitic stainless steel. The effects of temperature and strain rate on deformation behaviors were represented by Zener-Holloman parameter in an exponent type equation. The influence of strain was incorporated in the constitutive analysis by considering the effect of strain on material constants. The constitutive equation (considering the compensation of strain) could precisely predict the flow stress only at 0.1 and 1 s−1 strain rates. A modified constitutive equation (incorporating both the strain and strain rate compensation), on the other hand, could predict the flow stress throughout the entire temperatures and strain rates range except at 1123 K in 10 and 100 s−1. The breakdown of the constitutive equation at these processing conditions is possibly due to adiabatic temperature rise during high strain rate deformation.  相似文献   

16.
《Composites Part B》2003,34(4):361-371
This paper presents an analytical model to calculate decrease of kinetic energy and residual velocity of projectile penetrating targets composed of multi-layered planar plain-woven fabrics. Based on the energy conservation law, the absorbed kinetic energy of projectile equals to kinetic energy and strain energy of planar fabric in impact-deformed region if deformation of projectile and heat generated by interaction between projectile and target are neglected. Then the decrease of kinetic energy and residual velocity of projectile after the projectile perforating multi-layered planar fabric targets could be calculated. Owing to fibers in fabric are under a high strain rate state when fabric targets being perforated by a high velocity projectile, the mechanical properties of the two kinds of fibers, Twaron® and Kuralon®, respectively, at strain rate from 1.0×10−2 to 1.5×103 s−1, are used to calculate the residual velocity of projectile. It is shown that the mechanical properties of fibers at high strain rate should be adopted in modeling rate-sensitivity materials. Prediction of the residual velocities and energy absorbed by the multi-layered planar fabrics show good agreement with experimental data. Compared with other models on the same subject, the perforating time in this model can be estimated from the time during which certain strain at a given strain rate is generated. This method of time estimation is feasible in pure theoretical modeling when the perforation time cannot be obtained from experiments or related empirical equations.  相似文献   

17.
Plastic deformation behavior of dual-phase Ni–31Al intermetallics at elevated temperature was examined. It was found that the alloy exhibited good plasticity under an initial strain rate of 1.25 × 10−4 s−1 to 8 × 10−3 s−1 in a temperature range of 950–1075 °C. A maximum elongation of 281.3% was obtained under an initial strain rate of 5 × 10−4 s−1 at 1000 °C. The strain rate sensitivity, m value was correlated with temperature and initial strain rate, being in the range of 0.241–0.346. During plastic deformation, both the two phases Ni3Al and NiAl in dual-phase Ni–31Al could co-deform without any void formation or debonding, the initial coarse microstructure became much finer after plastic deformation. Dislocation played an important role during the plastic deformation in dual-phase Ni–31Al alloy, the deformation mechanism in dual-phase Ni–31Al could be explained by continuous dynamic recovery and recrystallization.  相似文献   

18.
Constitutive analysis for hot working of modified 9Cr–1Mo (P91) ferritic steel was carried out employing experimental stress–strain data from isothermal hot compression tests, in a wide range of temperatures (1123–1373 K), strains (0.1–0.5) and strain rates (10−3–102 s−1). The effects of temperature and strain rate on deformation behaviour were represented by Zener–Hollomon parameter in an exponent-type equation. The influence of strain was incorporated in the constitutive equation by considering the effect of strain on different material constants. Activation energy was found to vary with strain in the range 369–391 kJ mol−1. The developed constitutive equation (considering the compensation of strain) could predict flow stress of modified 9Cr–1Mo steel over the specified hot working domain with very good correlation and generalization.  相似文献   

19.
Deformation of PC/ABS alloys at elevated temperatures and high strain rates   总被引:1,自引:0,他引:1  
The objective of this paper is to experimentally study the deformation behavior of the alloys of polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) at elevated temperatures and high strain rates. Four kinds of PC/ABS alloys with the ratio of PC to ABS being 80:20, 60:40, 50:50 and 40:60 and three different strain rates 8.0 × 102 s−1, 2.7 × 103 s−1 and 1.0 × 104 s−1 are considered. The Split Hopkinson Pressure Bar (SHPB) experiments are carried out at 293 K and 343 K, respectively. The curves of engineering stress and engineering strain and true stress and true strain are obtained for the PC/ABS alloys at different temperatures and different strain rates, respectively. The effects of temperature, strain rate and the fraction of ABS on the deformation behavior of PC/ABS alloys are discussed in details, and then a temperature and strain rate-dependent phenomenological constitutive model for PC/ABS alloys is developed.  相似文献   

20.
This paper reports the high-strain rate properties of 3-D braided basalt/epoxy composite materials at 26 °C, −50 °C, −100 °C and −140 °C with strain-rate range from 1300 s−1 to 2100 s−1 by experimental study. A simple and effective cryogenic device was applied to the SHPB system to create the low-temperature field of the samples. It was found that the compression modulus, peak stress, failure strain and specific energy absorption of the 3-D braided basalt/epoxy composite materials had different sensitivity to temperatures and strain rates. In the out-of-plane impact, there were two failure modes, namely, compression-failure mode and shear-failure mode. Fracture of fiber tows was irregular with abundant pull-out of fiber and much finely-divided fragmentation of resin among fibers at room temperature. In cryogenic field, the fracture of fiber tows was neat and tidy with few pull-out of fiber and few finely-divided fragmentation of resin. However, in the in-plane impact, there was only compression failure mode. And there was no fracture of fiber tows and no big difference among samples tested under different gas pressures. Because of the function of squeezing and buckling, split-off separation of the composite could be blocked by the tangled fiber tows. As a whole, the reinforcement could still keep its structural integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号