首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humic substances fouling in ultrafiltration processes   总被引:1,自引:0,他引:1  
Membrane fouling by humic substances (HS) is a major problem in UF water treatment. The complex phenomena involved have been the subject of numerous investigations. HS fouling is attributed to accumulation of particles in the feed water on the membrane surface forming a cake layer and adsorption of small particles in the inner pores thus constricting or blocking the pore mouth. The exact contribution of each of these mechanisms to membrane fouling and to flux reduction is not sufficiently clear. While there is a substantial qualitative agreement on various fouling aspects in studies focusing on commercial humic acid solutions, the extensive literature on fouling by natural organic matter (NOM) is less coherent. The major deficiency in the available information is the lack of reliable predictive models. This paper presents a systematic review of scattered literate information and outlines HS fouling aspects that await elucidation.  相似文献   

2.
为考察水体中天然有机物(NOM)对纳滤膜性能产生的影响,以腐殖酸(HA)、牛血清蛋白(BSA)和海藻酸钠(SA)分别模拟水中常见NOM,腐殖质、蛋白质和多糖,对国产NF-1812纳滤膜进行单组分及其混合物定性定量有机污染及清洗实验。结果表明,有机污染造成膜通量下降,膜污染程度为SA>HA>BSA;NOM截留率可稳定在99.2%~99.6%;膜污染阻力主要为浓差极化阻力,其次是凝胶层阻力和内部污染阻力,有机污染液综合黏度和综合含量越大,浓差极化阻力的比例越高;对多组分有机污染膜进行错流速度9 cm/s的物理水力清洗和pH=10.0的质量分数分别为0.1%的NaOH+0.025%Na-SDS化学药剂清洗,膜通量、NOM截留率、苦咸水截留率、SEM成像均恢复至原膜状态,纳滤膜清洗效果良好,适用于中国西北苦咸水地区。  相似文献   

3.
Natural surface waters in Algarve, Portugal, have important seasonal variations in natural organic matter (NOM) content, that influences ultrafiltration (UF) performance. This paper addresses the evaluation of the pH adjustment for seasonal control of UF fouling at a laboratory scale, using a plate and frame polysulphone membrane of 47 kDa MWCO. Results of two types of natural water (clear water, 3-5 NTU, and turbid water, 33-34.6 NTU) and three different water pH values (acid, neutral and basic) demonstrated that the pH adjustment could be used for seasonal control of UF fouling: when the water has less NOM (in dry periods, clear water), the acid pH will improve the UF performance, while during and after intense rainfall periods (turbid water with high NOM concentration) basic pH will be advantageous, because it minimizes membrane fouling. This behaviour is explained for clear water in terms of charge effects on membrane size. For turbid water, the electrostatic repulsion between membrane surface and NOM and turbidity particles is reduced at pH 4.13 and protonation of the NOM functional groups decreases the hydrodynamic radii of humic substances while increasing their hydrophobicity and their tendency to adsorb. Therefore, a dense fouling layer develops and flux is lower at pH 4.13 than at pH 8.33. These results together with the observed raw water feed concentrations decline and rejection decrease with WRR confirm the extensive adsorption on the membrane enhanced by the moderate hardness cation of this water.  相似文献   

4.
In this study, a high performance poly(ether sulfone) (PES) hollow fiber ultrafiltration (UF) membrane has been prepared for removal of natural organic matter (NOM). The membrane was spun from a dope solution containing PES/poly (vinyl pyrrolidone) (PVP 40K)/N‐methyl‐2‐pyrrolidone (NMP) by using a wet‐spinning process. Characterization of the membrane in terms of pure water flux, molecule weight cut‐off (MWCO), and retention for a model humic acid (HA) were conducted, and the fouling resistance was analyzed. The experimental results showed that the membrane had a pure water permeability of 20 × 10?5 L m?2 h?1 Pa?1 and a nominal MWCO of 6000 Da. The results also showed that the membrane retention for humic acid was over 97% and both productivity and selectivity for HA increased with increasing feed velocity. The PES membrane in this study exhibited a much lower fouling tendency than the commercial polysulfone membrane. SEM images revealed that the membrane had an outer dense skin and a porous inner surface. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 430–435, 2006  相似文献   

5.
The objectives of this research were to investigate the combined and individual influence of hydrophobic and hydrophilic fractions of NOM on the fouling of thin-film composite nanofiltration (NF) membranes, and also the roles of solution chemistry on the permeate flux and fouling. Combined fouling is compared to the individual fouling behaviors (i.e., alginate or humic acid alone).Experiments were conducted using a “cross-flow” pilot-scale membrane unit with a full circulation mode. Fouling experiments were performed with individual and combined humic acid and alginate.The results demonstrated that increasing organic concentration increased greatly the rate and extent of flux reduction. Individual alginate fouling was more detrimental than individual humic acid fouling, and alginate exhibited greater flux decline than humic acid fouling alone at the same conditions. A higher flux decline was observed with increasing proportions of aliginate in combined fouling. In other word, there are antagonistic effects during combined fouling because the charge functional groups of two above foulants are negative and increase electrostatic repulsion between two foulants and also foulant-membrane. The flux reduction increased with increasing ionic strength, foulant concentrations, and with lower pH. This observation implies the importance of interaction between various foulants for deeper understanding of fouling phenomena. The membrane fouling was largely dependent on organic properties and fractions.  相似文献   

6.
J. Lowe  Md.M. Hossain 《Desalination》2008,218(1-3):343-354
Humic acids are primarily a result of the microbiological degradation of surrounding vegetation and animal decay and enter surface waters through rain water run-off from the surrounding land. This often gives rise to large seasonal variations, high concentrations in the wet season and lower concentrations in the dry season. Alone humic acid is just a colour problem but when present in conventional treatment processes like chlorination, carcinogenic by-products like trihalomethane and haloacetic acid are formed. This, in addition to the demand for clean potable drinking water, has sparked extensive research into alternative processes for the production of drinking water from various natural/industrial sources. One of the major areas of focus in these studies is the use of membranes in microfiltration, ultrafiltration and nanofiltration. In this report the humic acid removal efficiency of ultrafiltration membranes with 3 kDa, 5 kDa and 10 kDa MWCO is examined. The membranes were made of regenerated cellulose and were in the form of cassette providing a 0.1 m2 surface area. At first distilled and deionised water, known as milliQ water, was used as the background feed solution to which humic acid powder was added. It was found that all three membranes removed humic acid with an efficiency of approx. 90% and were capable of reducing initial concentrations of 15mg/L to below the New Zealand regulatory limit of 1.17 mg/L. The permeate flux at a transmembrane pressure of 2.1 bar was approx. 20 l/m2/h (LMH) and 40 LMH, respectively through the membranes with MWCO 3 kDa and 5 kDa. These membranes experienced significant surface fouling resulting in retentate flow rates as low as 11 litres per hour after just four runs compared to the recommended 60–90 l/h. Cleaning with 0.1 M NaOH slightly improved the retentate flow rate, but well below those obtained with fresh membranes. The 10 kDa membrane provided high retentate flow rates which evidently minimised fouling by providing a good sweeping action across the membrane surface while maintaining humic acid removal below the regulatory 1.17 mg/L level. The permeate flux through this membrane was initially high (140–180 LMH) and reduced to approx. 100 LMH after 10–12 min of operation. Increasing the initial humic acid feed concentration from 10 mg/L to 50 mg/L did not significantly decrease humic acid removal efficiency although the retentate flow rate was lower at higher concentrations. Finally the tap water was tested as the background solution and treated for the removal of humic acid. The presence of ions and other impurities in the tap water had little effect on humic acid removal. However, the permeate flux through 10 kDa membrane decreased from 100 LMH for milliQ water to 60 LMH for tap water after 20 min of operation.  相似文献   

7.
The objectives of this research are to identify the membrane fouling potential due to different fractions of NOM and correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane and investigate the mechanism of coagulation affecting UF, and find the optimum conditions of the combined of coagulation with UF membrane filtration for NOM removal. For Nakdong river water, the humic acid fraction was the most reactive precursor fraction for the formation of the ratio of THMFP/DOC (STHMFP) and TOXFP/DOC (STOXFP). The result of adsorption kinetics tests showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics on both membranes. Thus, hydrophobic compounds exhibited a preferential adsorption onto membrane. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption ratio (C1/Ce) was greater for the hydrophobic membrane than for the hydrophilic membrane regardless of the kind of organic fractions. For combined coagulation with membrane process, flux reduction rate showed lower than the UF process alone. Also, the rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying the coagulation process before membrane filtration showed not only reduced membrane fouling, but also improved removal of dissolved organic materials that might otherwise not be removed by the membrane. That is, during the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing conditions due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation (both rapid mixing and slow mixing) improved not only dissolved organic removal efficiency but also DBP (Disinfection By-Product) precursor's removal efficiency.  相似文献   

8.
Ceramic microfiltration membranes were prepared using five different compositions formulated with different amounts of fly ash and kaolin and sintered at 900 °C. The SEM analysis evidenced a large number of small pores on the surface of kaolin-rich membranes. The M4 membrane prepared using 25% fly ash and 50% kaolin was found to be optimum as it had a good combination of pore size (0.885 μm), porosity (42.7%), mechanical strength (43.6MPa), and chemical stability (<3% weight loss in acid and 0.02% in base), and this membrane was successfully applied in separation of humic acid from water. The permeate flux data fitted very closely with cake-filtration model, indicating the formation of a cake layer on membrane surface. Membrane fouling was found to be reversible and easily negated by cleaning and backflushing. The regenerated membrane showed better rejection of humic acid than fresh membrane with a flux recovery of above 80%.  相似文献   

9.
水中天然有机物对超滤膜污染研究   总被引:4,自引:1,他引:3  
对超滤膜受天然有机物污染的特性进行研究,同时考查无机矿物质成分对污染的协同影响。采用PES平板膜进行膜污染试验,模拟地表水研究腐殖酸以及钙离子的影响并进行了化学清洗试验。研究结果表明,在pH值为7.8,腐殖酸质量浓度为15 mg/L,操作压力0.1 MPa下,当钙离子浓度为4 mmol/L时,膜污染最为严重,10 min后膜通量降到起始膜通量的60%以下。先用0.1 mol/L的NaOH,再用0.5%的盐酸清洗后,膜通量可恢复至起始膜通量的98%。  相似文献   

10.
The effects of natural organic matters (NOM) on Al-floc stability were investigated by on-line probing of changes in floc diameters and interior fractal dimensions at alternative shearing using the small angle light-scattering technique. Fine kaolin particles coagulated with polyaluminum chloride (PACl) formed flocs of size adjusted during subsequent alternative shearing. The presence of humic acid or chitosan reduced or boosted floc formation. Floc breakage is completely irreversible at high humic acid concentrations. Certain master curves for floc size versus time curves were assessed, depending on shearing rate and added organic substances but not on the alternative shearing rates. A two-level floc breakage and reformation scheme was proposed in this study to interpret the observation results.  相似文献   

11.
为有效解决超滤过程中因有机物堵塞膜孔导致的膜污染和渗透通量下降问题,提出在对腐植酸(HA)溶液超滤传输及反洗过程中引入微纳米气泡水处理工艺,以强化超滤过程,实验研究了微纳米气泡对超滤膜渗透通量和截留效率的影响以及膜污染去除效果。结果表明在纯水和HA溶液中鼓入微纳米气泡后其归一化通量增大到1.1~1.3,截留效率提高了2.5%~22.0%,微纳米气泡水清洗和反洗后膜通量恢复分别高于纯水21%和25%。  相似文献   

12.
Membrane fouling and chemical cleaning in water recycling applications   总被引:2,自引:0,他引:2  
Fouling and subsequent chemical cleaning are two important issues for sustainable operation of nanofiltration (NF) membranes in water treatment and reuse applications. Fouling strongly depends on the feed water quality, especially the nature of the foulants and ionic composition of the feed water. Consequently, appropriate selection of the chemical cleaning solutions can be seen as a critical factor for effective fouling control. In this study, membrane fouling and chemical cleaning under condition typical to that in water recycling applications were investigated. Fouling conditions were achieved over approximately 18 h with foulant cocktails containing five model foulants namely humic acids, bovine serum albumin, sodium alginate, and two silica colloids in a background electrolyte solution. These model foulants were selected to represent four distinctive modes of fouling: humic acid, protein, polysaccharide, and colloidal fouling. Three chemical cleaning solutions (alkaline solution at pH 11, sodium dodecyl sulphate (SDS), and a combination of both) were evaluated for permeate flux recovery efficiency. The results indicated that with the same mass of foulant, organic fouling was considerably more severe as compared to colloidal fouling. While organic fouling caused a considerable increase in the membrane surface hydrophobicity as indicated by contact angle measurement, hydrophobicity of silica colloidal fouled membrane remained almost the same. Furthermore, a mechanistic correlation amongst cleaning efficiency, characteristics of the model foulants, and the cleaning reagents could be established. Chemical cleaning of all organically fouled membranes by a 10 mM SDS solution particularly at pH 11 resulted in good flux recovery. However, notable flux decline after SDS cleaning of organically fouled membranes was observed indicating that SDS was effective at breaking the organic foulant—Ca2+ complex but was not able to effectively dissolve and completely remove these organic foulants. Although a lower permeate flux recovery was obtained with a caustic solution (pH 11) in the absence of SDS, the permeate flux after cleaning was stable. In contrast, the chemical cleaning solutions used in this study showed low effectiveness against colloidal fouling. It is also interesting to note that membrane fouling and chemical cleaning could permanently alter the hydrophobicity of the membrane surface.  相似文献   

13.
Huangpu River water treatment by microfiltration with ozone pretreatment   总被引:1,自引:0,他引:1  
With the promulgation of more stringent regulations to guarantee the quality of drinking water, low pressure membrane processes are nowadays considered for surface water treatment. But these membranes are sensitive to fouling. In this study ozone is introduced to pretreatment for membrane filtration to get a high quality permeate and improve membrane performance. The organic matter characteristics, such as AMWD of organic matter, hydrophilic/hydrophobic fractions were studied with ozone oxidation. Results show that for Huangpu River water, ozone oxidation offers high percentage of UV absorbance removal than DOC removal. Highest removal of DOC and UV254 of 10% and 71% respectively were observed. The dominant organic matter oxidized by ozone was 2-7.0 kDa in terms of molecule distribution investigation. Ozone oxidizes more hydrophobic fraction to hydrophilic one. Changes of organic matter composition improved membrane flux. There is the optimal dosage with ozone of 1.5 mgO3/L made membrane flux maximum during 0.5-3.0 mgO3/L ozone dosage. Ozone oxidization provided degradation of macromolecule organic matter, which is responsible to membrane fouling, to small molecule organic substance. Study about the chemical cleaning of the fouled membrane also supports the point that membrane fouling is produced by the organic substance with high molecule weight.  相似文献   

14.
An analysis of fouling material and the effects of chemical cleaning were examined for a reverse osmosis (RO) membrane, which was used for the treatment of wastewater from a rolling mill process in the steel industry. The bulk foulant accumulated in the membrane module consisted mainly of CaSO4·2H2O, and the organic contaminants were contained at a very low level. The test pieces obtained from the exhausted RO membrane module (spiral-wound type) were used to examine chemical cleaning with the following solutions: acid and alkaline solutions with EDTA added, 50% methanol, and 10% ethyleneglycol monobutyrate (EGMB). Although a major component of the fouling material was calcium salt, the acid or alkaline solution containing EDTA did not promote the effective recovery of the water flux. On the other hand, cleaning with 50% methanol or 10% EGME solution increased the water flux significantly. The atomic force microscopy images of the membrane surface indicated that relatively large particles accumulated at the surface of the fouled membranes, and the large particles remained even after acid or alkaline cleaning. In the case of EGMB cleaning after alkaline cleaning, large particles did not remain, and uniform and fine particles were observed. The results that calcium salt, a major fouling material, was not removed effectively with the acid and alkaline solution may be due to trace organic materials in the fouling layer that act as a binder for inorganic fouling materials.  相似文献   

15.
The effects of potassium permanganate(KMnO_4)dosing position on the natural organic matter(NOM)removal as well as membrane fouling were investigated in the coagulation/ultrafiltration combined process.KMnO_4 oxidation altered the NOM characteristics in terms of hydrophobicity and molecular weight,and destroyed humic substances originated from terraneous organisms in raw water.The optimal KMnO_4 dosage was 0.5 mg·L~(-1) in the peroxidation enhanced coagulation process with respect to the dissolved organic carbon(DOC)removal.When KMnO_4 was dosed into both upstream and downstream of coagulation,namely in the proposed twoposition dosing mode,coagulation and KMnO_4 oxidation worked individually on the apparent DOC removal.However,compared to the KMnO_4 addition prior to or after coagulation,the two-position dosing mode dramatically alleviated membrane fouling and reduced fouling irreversibility.This was attributed to the change of NOM characteristics as a result of KMnO_4 addition prior to coagulation and the presence of MnO_2 on membrane surface as a result of KMnO_4 addition prior to ultrafiltration.This work may provide useful information for the application of KMnO_4 oxidation in the coagulation/ultrafiltration combined system.  相似文献   

16.
Nanofiltration of conventionally pretreated groundwater with elevated hardness and content of NOM (Ca2+: 115 mg/L; Mg2+: 12 mg/L; DOC = 2.9 mg/L) was carried out in a German water treatment plant of the public works of Mainz. For the investigated water the employed membrane (NF200B, Filmtec/DOW) showed almost complete rejection (>95%) of NOM, determined by measuring DOC, UVA (254 nm) and AOX- and THM-formation potential. Due to the high concentration of SO42− and presumably due to complexation of Ca2+ with humic substances the rejection of Ca2+ and Mg2+ was unexpectedly high (>74% and >86%, respectively) compared to a pure CaCl2 solution (R(CaCl2) <45%). Within an operation period of 4 weeks no significant fouling occurred (flux decline <2%). This was mainly due to the pre-treatment of the raw water (deferrization, demanganization, rapid sand filtration). The operating costs for a nanofiltration plant were calculated to about € 0.23/m3 at a permeate output of 20,000 m3/d which means an increase of the price for drinking water approximately 9%. By blending the permeate and the conventionally treated water at a ratio to yield a DOC concentration in the blend of 1 mg/L, the additional costs for nanofiltration would come to € 0.11/m3.  相似文献   

17.
Surface modification is an effective approach to enhance the properties of polymeric membranes. In this work, the UV‐photo‐induced graft polymerization of acrylic acid (AA) onto the surfaces of polyamide thin film composite (TFC‐PA) membranes was carried out using an immersion method performed under ambient conditions. The experimental results indicate that the membrane surface becomes more hydrophilic because of the appearance of new carboxylic groups on the surface after the modification. This reduces the water contact angle and increases the water permeability compared with the unmodified membrane. The membrane surface is relatively compact and smooth due to the formation of the polymeric AA‐grafted layer. The separation performance of the modified membrane is improved with enhancements of the permeate flux and the retention of humic acid from aqueous feed solutions compared with those of the unmodified membrane. The fouling resistance of the membrane is also improved because of the higher maintained flux ratios and the lower irreversible fouling factors for the removal of various organic compounds from feed solutions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44418.  相似文献   

18.
A major factor limiting the use of ultrafiltration (UF) membrane in water treatment process is the membrane fouling by natural organic matter such as humic acid (HA). In this work, neat PVDF and PVDF/TiO2 mixed‐matrix membranes were prepared and compared in terms of their antifouling properties. Two commercial types of TiO2 namely PC‐20 and P25 were embedded to prepare the mixed matrix membranes via in situ colloidal precipitation method. The contact angles for the mixed‐matrix membranes were slightly reduced while the zeta potential was increased (more negatively charged) compared with the neat membrane. Filtration of HA with the presence of Ca2+ demonstrated that mixed‐matrix membrane could significantly mitigate the fouling tendency compared with the neat membrane with flux ratio (J/J0) of 0.65, 0.70, and 0.82 for neat PVDF membrane, PVDF/TiO2 mixed‐matrix membrane embedded with P25 and PC‐20, respectively. PC‐20 with higher anatase polymorphs exhibited better antifouling properties due to its hydrophilicity nature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The occurrence of flux decline in brackish water reverse osmosis (RO) plants due to dissolved organics is a topic of ongoing research. This type of organic fouling has also been found in seawater RO plants. A study was undertaken to compare organic fouling in hollow fiber and spiral wound membranes using a seawater feed that possessed a high concentration of huraic acid. This study was undertaken at an RO plant on Grand Cayman Island, British West Indies. The feed water came from a sea well and possessed a concentration of humic acid that varied between 35 and 60 mg/l.The hollow fiber membrane was operated at a recovery of 25% while the recovery with the spiral wound membrane varied between 5 and 25%. The performance data which included permeate flow, salt rejection, pressure drops across the membrane and analysis of the membranes for organic fouling were undertaken. This study compared the performance data and organic fouling between the hollow fiber and spiral wound meembranes.  相似文献   

20.
Bitumen, separated from oil sands by the hot water extraction process, contains ultra‐fine (< 200 nm), inorganic solids (BS). Surfaces of BS particles are coated with toluene insoluble organic matter (TIOM). This organic material is polar and aromatic with contributions from both humic and asphaltene‐like components. Although the surfaces of BS particles are dominated by TIOM, the coverage is patchy rather than continuous. As a result, these solids are capable of stabilizing fine water emulsions in the bitumen phase. The nature of the organic matter on the surfaces of the particles is such that it has a high propensity to form coke. Therefore, these particles can also play a role in fouling on equipment and catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号