首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
借助于有限元分析软件DEFORM-3D,研究了环形通道形型腔的半锥形径向通道、全锥形径向通道以及半球形通道下,外径Φ200 mm、壁厚16 mm杯状件的挤压变形效果,研究结果表明:半球形通道下成形件挤压载荷和平均等效塑性应变值最小;而全锥形通道下成形件平均等效塑性应变值和挤压载荷最大;相比之下半锥形通道下成形件的平均等效塑性应变值适中,成形载荷适中。运用有限元模拟分析与物理实验相结合,对比分析了杯状件在半锥形通道下挤压成形与传统反挤压成形下的挤压载荷和成形件的平均塑性应变以及变形均匀性程度,结果表明:半锥形通道下挤压成形的杯状件,挤压载荷较传统反挤压减少近70%,平均塑性应变值约为传统反挤压的2.29倍且变形更均匀,成形件晶粒细化效果更明显、强化相分布较均匀。  相似文献   

2.
采用数值模拟和实验方法研究薄壁、多筋AZ31镁合金挤压型材的温热张力绕弯成形工艺,分析工艺参数对AZ31弯曲型材回弹特征的影响。结果表明:当成形温度由100℃升高至200℃时,AZ31镁合金型材弯曲件回弹角的实验值和模拟值均减小,实验回弹角由11.6°降低至10.7°,回弹率由11.26%降低至10.39%,回弹角与成形温度的关系近似为线性关系。当弯曲角由100°增加至110°时,AZ31镁合金型材弯曲件回弹角的实验值和模拟值都增加,实验回弹角由10.8°增加至11.5°,回弹率由10.48%增加至11.16%。当预拉伸量由0.2%增加至1.1%时,AZ31镁合金型材弯曲件回弹角的实验值和模拟值都减小,实验回弹角由12.5°降低至9.8°,回弹率由12.14%降低至9.51%。  相似文献   

3.
变速加载模式下镁合金微观组织演变规律研究   总被引:1,自引:0,他引:1  
为了研究机械伺服压力机变速加载模式对AZ31镁合金镦粗成形过程微观组织和硬度的影响,采用在机械伺服压力机上匀速加载模式和单向减速加载模式对镁合金镦粗成形过程进行了有限元分析,并进行了AZ31镁合金试样的金相分析和硬度测量。结果表明:在压缩变形初始阶段,采用单向减速模式的试样发生了动态再结晶,而采用匀速加载模式的试样未发生再结晶。在变形量达到70%时,采用两种速度模式镦粗试样的微观组织趋向一致。与匀速加载模式相比,单向减速加载模式有利于减小试样温差变化,也有助于镁合金完全动态再结晶,且试样的晶粒细小、组织分布均匀,通过单向减速加载模式的AZ31镁合金试样的硬度比匀速加载模式试样的硬度提高了49%。  相似文献   

4.
钟兵 《热加工工艺》2012,41(13):127-129
运用DEFORM-3D有限元分析软件模拟了AZ31镁合金保温杯内筒反挤压过程,分析了温度和挤压速度对AZ31镁合金反挤压过程中的等效应力、挤压力的影响。模拟结果表明:凸模圆角处的等效应力值最大;随着温度的升高,所需要的最大挤压力变小;挤压速度越大,最大挤压力越大。  相似文献   

5.
根据相似性原理研制AZ31镁合金静液挤压实验模拟成形装置,在630kN液压机上以彩色塑性胶泥为模拟材料进行了静液挤压实验模拟,证明AZ31镁合金静液挤压成形工艺的可行性。应用Deform-3D有限元分析软件对直径3mm的镁合金丝进行了静液挤压成形工艺仿真研究,得到350℃镁合金静液挤压时温度场分布、应力应变分布及挤压力等技术数据,为AZ31镁合金静液挤压成形工艺及模具设计提供了理论依据。  相似文献   

6.
利用Nakazima半球凸模胀形实验构建了AZ31镁合金在170、200和230℃温度条件下的成形极限图,分析了温度对AZ31镁合金成形极限的影响。利用有限元方法对AZ31镁合金在200℃温度下的胀形过程进行了数值模拟,并将所得模拟结果与实验结果进行对比。结果表明,随着胀形温度的升高,AZ31镁合金的变形抗力不断降低,显著提高了其成形极限,并验证了AZ31镁合金的塑性从100℃快速上升,到200℃后上升变缓。数值模拟和实验研究的结果具有较好的一致性,证实了所构建模型的有效性。  相似文献   

7.
以AZ31镁合金挤压型材为研究对象,通过数值模拟和实验方法研究了AZ31镁合金型材温热张力绕弯成形工艺,分析了温度及预拉伸量对AZ31镁合金型材成形质量及回弹的影响规律。结果表明:AZ31镁合金型材在成形温度低于110℃时无法顺利弯曲成形;随着成形温度升高,AZ31镁合金型材回弹角降低,二者近似呈线性递减关系;当成形温度从140℃升高至220℃时,弯曲成形后AZ31镁合金型材回弹角实验值由5.4°降低至3.8°,降低了1.6°,而模拟结果降低了0.693°。随着预拉伸量的增加,AZ31镁合金型材回弹角降低。当预拉伸量从0%增大至6%时,弯曲成形后AZ31镁合金型材回弹角实验值由10.9°降低至3.1°,降低了7.8°,模拟结果降低了4.459°。  相似文献   

8.
AZ31B镁合金板液压-机械拉深试验研究   总被引:3,自引:1,他引:2  
对AZ31B镁合金板进行液压-机械拉深试验,分析其变形特点和液压力对其成形性能的影响规律,并对液压拉深件的破裂现象进行了分析.试验结果表明,AZ31B镁合金板在液压-机械拉深时的成形性能比普通拉深时的差,主要原因是AZ31B镁合金板本身的塑性变形能力差,液压力未能及时发挥作用.  相似文献   

9.
镁合金高温精密锻造的成形极限   总被引:1,自引:0,他引:1  
在高温下,用镦粗实验来研究镁合金(ZK60)的可成形性,并用精密反挤压实验来验证实验结果.在镦粗实验中,圆柱形棒料在100~400℃的温度范围内,用带同心槽的工具挤压以获得即将被挤裂的临界压下量并得到各种参数曲线.在反挤压实验中,挤压筒加热到和坯料同样的温度,在100~300℃的温度范围内,不用润滑剂直接将试件用机械压力压成杯形件.有限元模拟利用两个破裂准则计算出成形极限. 实验中发现当温度低于200℃时试件很脆.在200℃时发现一种现象在镦粗实验中样品发生很小的应变就破裂了,而在反挤压实验中,当挤压比大于3.7时,可以得到无裂纹的杯形件.在250~400℃之间镁合金表现出良好的可成形性.当温度高于400℃时,镁合金发生严重的氧化而不适合成形.在100~200℃之间,破裂准则用最大拉伸应力来表示,它可以有效地预测镁合金的成形极限.  相似文献   

10.
镁合金锥形件内环筋通过旋压无法形成高筋。因此,提出斜楔加载整体成形工艺。通过DEFORM-3D软件模拟了AZ80镁合金锥形件内环筋成形过程,采用正交试验法分析了反挤成形过程中挤压温度、挤压速度、分瓣凸模圆角半径对成形过程中最大载荷和平均应变的影响,并对金属流动和等效应变规律进行了分析。结果表明:AZ80镁合金锥形件内环筋的最佳成形温度为410℃,最佳挤压速度为2 mm/s,最佳分瓣凸模圆角半径为55 mm。通过实验,环筋部位填充饱满,零件达到使用要求。  相似文献   

11.
Deep drawing of square cups with magnesium alloy AZ31 sheets   总被引:25,自引:0,他引:25  
The square cup drawing of magnesium alloy AZ31 (aluminum 3%, zinc 1%) sheets was studied by both the experimental approach and the finite element analysis. The mechanical properties of AZ31 sheets at various forming temperatures were first obtained from the tensile tests and the forming limit tests. The test results indicate that AZ31 sheets exhibit poor formability at room temperature, but the formability could be improved significantly at elevated temperatures up to 200 °C. The test results were then employed in the finite element simulations to investigate the effects of process parameters, such as punch and die corner radii, and forming temperature, on the formability of square cup drawing with AZ31 sheets. In order to validate the finite element analysis, the deep drawing of square cups of AZ31 sheets at elevated temperatures was also performed. The experimental data show a good agreement with the simulation results, and the optimal forming temperature, punch radius and die corner radius were then determined for the square cup drawing of AZ31 sheets.  相似文献   

12.
通过等温挤压和金相观察,研究了AZ31和AZ91镁合金不同变形条件下的挤压性能和变形后的微观组织变化。结果表明,AZ31镁合金的挤压变形性能较好,而AZ91镁合金在挤压比为4∶1、挤压温度为400℃,以及在挤压比为9∶1、挤压温度为350℃和400℃时,挤压后的试件表面均出现了裂纹;AZ31镁合金的最佳成形温度为300℃~400℃,AZ91镁合金的最佳成形温度为300℃~350℃;镁合金在热挤压过程中发生了动态再结晶,挤压之后合金的晶粒显著细化。  相似文献   

13.
The influence of press ram motion on forging performance for magnesium alloys was examined at elevated temperatures using an upsettability test on a CNC servo press. The forging limit of a wrought AZ31B (Mg–3 mass%Al–1 mass%Zn) magnesium specimen, forged using applied deceleration of the press ram motion, was found to be 30% higher than the forging limit achieved without press ram motion control. A finite element analysis was conducted to model the experimental results. The calculated temperature distribution was relatively uniform during upsetting with decelerated ram motion, and the maximum equivalent strain was maintained at a low level. Experimental and simulation results suggested that the influence of the press ram motion on the ductility of the Mg specimen could be described by a strain localization model. Furthermore, the ductility of Mg specimens during decelerated ram motion was improved in backward extrusion.  相似文献   

14.
为探索镁合金整体壁板压弯成形的可行性,以及镁合金壁板压弯成形过程中金属的流动规律,对AZ31镁合金网格壁板压弯成形进行了数值模拟和实验研究。建立了有限元数值模拟的几何模型,采用有限元计算软件对AZ31镁合金网格壁板压弯成形过程进行了数值模拟研究,分析了镁合金网格壁板压弯成形中的温度场、应变场、应力场、破坏系数等的分布规律。确定了合适的AZ31镁合金壁板压弯成形工艺参数,并对镁合金网格壁板压弯成形进行了实验研究,获得了合格的镁合金网格壁板弯曲件,并分析了镁合金网格壁板成形件尺寸精度,模拟结果与实验结果相吻合,最大相对误差为16.7%。  相似文献   

15.
对超声细化和未细化的AZ31镁合金棒料进行均匀化退火后热挤压,并对热挤压后的组织和硬度进行了对比分析。结果表明,与未经过晶粒细化处理棒料的热挤压组织相比,预先经过晶粒细化处理的AZ31镁合金棒热挤压组织更加均匀。当挤压比λ为16、挤压料温度为380℃、挤压速度为0.9 m/min时,组织发生回复再结晶。与未经晶粒细化处理棒料的挤压组织相比,经过晶粒细化处理的挤压组织更加细小;挤压速度增加到10 m/min时,经过晶粒细化处理后的AZ31镁合金挤压变形后棒料边缘容易发生二次再结晶现象,形成一条宽约75μm的粗晶组织,边缘附近区域组织中有孪晶形成。同时,经过晶粒细化处理后的AZ31镁合金挤压棒的硬度较高。  相似文献   

16.
通过在Gleeble1500D热模拟试验机上对AZ10、AZ31、AZ61和AZ91镁合金进行模拟挤压,并对热模拟挤压成形过程中的挤压力进行测定,研究AZ系列镁合金热模拟挤压成形过程挤压力及其组织变化。研究结果表明,在AZ系列镁合金中,随着合金元素含量的增多,挤压力逐渐增大,并且同种镁合金在挤压前经均匀化退火处理后所需的挤压力比未经均匀化处理的合金所需挤压力大,动态再结晶是影响其挤压力大小的决定性因素。  相似文献   

17.
通过Gleeble-1500D热模拟机获得AZ91D镁合金的应力应变曲线。采用刚塑性有限元法对AZ91D镁合金棒材挤压过程进行热力耦合数值模拟,分析了变形温度与挤出速度对挤压力和等效应变变化情况的影响。模拟的结果表明:在25∶1的挤压比下AZ91D镁合金的挤压温度为400℃,挤出速度为12.5 mm/s。  相似文献   

18.
AZ31B变形镁合金压力成形   总被引:14,自引:1,他引:14  
总结了AZ31B变形镁合金挤压、轧制和热冲压拉深的研究工作。AZ31B挤压板材无裂纹、无烧损,其组织呈晶粒细小的等轴晶;用分流挤压铝合金技术可生产挤压比不大于45,厚度不小于1 5mm的非薄壁镁合金管材;交叉轧制的镁合金薄板的A显著提高,Rp0.2和Rm明显下降;单向轧制时,则出现相反的结果。采用机械冲压法成功地热冲压出60mm×60mm×20mm的方形件,无裂纹现象。  相似文献   

19.
阎昱  李嘉欣 《锻压技术》2021,46(2):40-46
为了分析实际成形过程中AZ31B镁合金产生破裂的原因,并为改善工艺条件提供实用可靠的判据,采用实验和有限元模拟相结合的方法研究AZ31B镁合金的成形极限.分别对沿轧制方向、垂直于轧制方向、与轧制方向成45°的3种方向的试件进行单向拉伸实验,获得AZ31B镁合金的工程应力-工程应变曲线,获得材料的真实应力-真实应变曲线和...  相似文献   

20.
A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed, which is called the TCESE (tube continuous extrusion?shear?expanding) process. The process combines direct extrusion with a two-step shear?expanding process. The influences of expanding ratios, extrusion temperatures on the deformation of finite element meshes, strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software. Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process. The deformation of finite element meshes of tube blanks is inhomogeneous in the shear?expanding zone, and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy. A extrusion temperature of 380 °C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results. The average grain size of tubes fabricated by the TCESE process is approximately 10 µm. The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization. The (0001) basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process. The average hardness of the extruded tubes is approximately HV 75, which is obviously improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号