共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
预热温度对X80管线钢焊接热影响区组织性能的影响 总被引:2,自引:0,他引:2
X80管线钢在焊接过程中,热影响区由于受到焊接过程热的作用,其组织和性能会发生较大的变化,尤其是粗晶热影响区的组织和性能变化最大。采用热模拟技术、工程测试手段和显微分析方法,研究了焊前预热温度对X80管线钢粗晶热影响区的夏比冲击韧性的影响规律,并分析了原因,确定了管道在小线能量下焊接的预热温度。认为在较小线能量下焊接,焊前预热对粗晶区的韧性有利,在现场焊接线能量为10kJ/cm时,推荐焊前预热温度为150℃;若在较大线能量下焊接,焊前预热对粗晶区的韧性没有益处,预热温度过高会给粗晶区韧性带来损害,应予以限制。 相似文献
3.
4.
焊接预热温度对X80级管线钢组织性能的影响 总被引:1,自引:0,他引:1
通过焊接热模拟试验和冲击韧性试验,研究了不同预热温度对X80级管线钢组织性能的影响.结果表明,当焊接热输入为10 kJ/cm时,随着预热温度的增加,X80钢粗晶热影响区韧性有所增加;当焊接热输入为20 kJ/cm时,预热温度对韧性没有明显的改善;当预热温度超过150 ℃,已开始出现对韧性构成损害的块状铁素体和珠光体组织. 相似文献
5.
为了研究焊接热输入对X80管线钢粗晶热影响区的组织及性能影响,采用热模拟技术,对不同焊接热输入下X80管线钢的力学性能与显微组织进行了研究和分析。研究结果表明,在不同热输入量下厚壁X80管线钢粗晶热影响区组织为板条贝氏体、粒状贝氏体及M-A岛组织。当热输入量小于25 kJ/mm时,粗晶热影响区组织以贝氏体板条为主,冲击韧性最佳,但硬度较高;当热输入量在25 kJ/mm时,试验钢粗晶热影响区组织为板条贝氏体与粒状贝氏体,冲击韧性较高,且硬度适中;随着热输入的增大,粗晶热影响区中的粒状贝氏体变得极为粗大,同时,M-A形态与分布发生急剧变化,粗晶热影响区出现严重软化,冲击韧性值明显下降。 相似文献
6.
为了研究X80大应变管线钢焊接热影响区疲劳性能,采用MTS和INSTRON万能力学试验机测得了全壁厚X80大应变钢管焊接接头的疲劳寿命及焊接热影响区的疲劳裂纹扩展速率,并采用Gleeble-3500热模拟试验研究了焊接热循环不同峰值温度对组织和性能的影响。结果表明,焊接接头的疲劳性能显著降低,在相同的疲劳寿命条件下,其疲劳裂纹应力降低约100 MPa以上;疲劳裂纹均在焊趾处萌生,并向内沿热影响区扩展;而疲劳裂纹在热影响区的扩展速率随其通过的不同区域而变化。经焊接热循环后,热影响区呈现弱化趋势,强度最低点出现在细晶区,然而细晶区良好的塑韧性有利于抑制疲劳裂纹扩展,改善疲劳性能。 相似文献
7.
为了研究冷却时间t8/5对X100钢级管线钢焊接接头粗晶区组织性能的影响,采用单丝埋弧焊堆焊X100钢级管线钢板,利用热电偶和函数记录仪等设备测量了粗晶区的冷却时间t8/5,分别采用最小二乘法拟合与拉格朗日插值得到t8/5的计算公式,并对理论经验公式、最小二乘法拟合公式与拉格朗日插值公式计算结果进行了试验验证。验证结果表明,最小二乘法拟合公式的计算结果和测量值最接近,可以用来计算X100钢级管线钢热影响区粗晶区的冷却时间t8/5,也为合理制定X100钢级管线钢的焊接工艺提供了重要依据。 相似文献
8.
西部管线用钢焊接粗晶区的韧性研究 总被引:2,自引:1,他引:2
采用焊接热模拟技术和示波冲击试验方法,研究了适用于我国西部管线的三种X60级管线钢及其焊接热影响区在系列温度下的韧性规律,并从冲击能量特征和组织结构特征的角度对试验结果进行了分析和评价。 相似文献
9.
10.
焊接二次热循环峰值温度对X80级管线钢组织性能的影响 总被引:4,自引:0,他引:4
采用模拟焊接热循环的方法,研究了二次热循环对X80级管线钢焊接热影响区组织和性能的影响.结果表明,在双面焊和多道焊中,当焊接二次热循环峰值温度处于α γ两相区时,所试验的X80钢表现为局部脆化.此时形成的M-A组元含量、尺寸、硬度的变化是引起局部脆化的主要组织因素. 相似文献
11.
X80级管线钢冲击韧性及其有效晶粒研究 总被引:1,自引:1,他引:0
对某厂X80高钢级管线钢母材、焊缝、热影响区进行了夏比冲击韧性试验,对其有效晶粒进行了研究。试验发现热影响区的夏比冲击功值较低,认为应当把HAZ的CVN值作为冲击载荷条件下焊接接头的一个评判特征值。有效晶粒和冲击韧性值相互关联。 相似文献
12.
13.
14.
针对X80管线钢焊接热影响区的软化与脆化问题,研究模拟焊接热影响区的组织性能分布规律,为X80管线钢化学成分及焊接工艺的优化提供技术参考;采用Gleeble3500热模拟试验机对三种不同化学成分的X80钢进行焊接热影响区模拟试验研究,分析焊接热循环峰值温度、冷却时间t8/5对显微组织、拉伸性能、维氏硬度、冲击韧性的影响规律。当峰值温度范围为800~1000℃,X80焊接热影响区的临界区和细晶区存在软化现象;随着冷却时间t8/5的增大,X80焊接热影响区的软化率和软化温度范围均呈增大趋势,X80焊接热影响区的临界区和粗晶区易出现脆化现象。合理设计X80管线钢的化学成分和原始显微组织,可有效减小焊接热影响区的软化与脆化趋势。 相似文献
15.
焊接过程中通过快速冷却减少Ac3温度以上的高温保持时间和从800℃降到500℃的冷却时间,从而改善焊接热影响区的韧性.并通过光学显微镜和扫描电子观察不同热循环作用的热影响区的微观组织发现,缩短高温保持时间可使热影响区变窄,熔合线奥氏体晶粒变细和热影响区晶粒变粗大;然而,缩短从800℃到500℃的冷却时间可使热影响区贝氏体铁素体晶粒细化.熔合线M/A组分在数量和尺寸上有所减小,并且大部分转变成长条状.试验结果表明,快速冷却处理在改善X120管线钢热影响区韧性方面起着重要的作用. 相似文献
16.
为了研究不同热输入对管线钢焊缝粗晶热影响区冲击韧性的影响,选用40~55 kJ/cm 4种不同焊接热输入量(对应于t8/5=21~40 s)对管线钢进行了热模拟焊接试验,并对不同焊接热输入下的焊缝冲击韧性、冲击断口形貌进行了研究。研究结果显示,随着t8/5的增加,相变过程的冷速逐渐降低,导致相变形成的板条结构宽化,M-A组元的宽度逐渐变粗(即短轴、长轴之比增大),尺寸增大且粗大的M-A组元在晶界上链接成串,从而降低了冲击韧性;随着t8/5的增加,韧脆转变温度升高;热模拟峰值温度一致且较高导致混晶,也是引起冲击韧性降低和试验值分散性较大的原因;冲击断口的SEM形貌观察和能谱分析显示,材料中形成的大尺寸Ti、Nb复合碳氮化物析出相,以及形成的邻近两个或多个Al2O3和CaS复合夹杂物可以成为诱发脆性解理断裂的起裂源。 相似文献
17.