首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Virtual Design and Optimization of Machine Tool Spindles   总被引:4,自引:0,他引:4  
Y. Altintas  Y. Cao 《CIRP Annals》2005,54(1):379-382
An integrated digital model of spindle, tool holder, tool and cutting process is presented. The spindle is modeled using an in-house developed Finite Element system. The preload on the bearings and the influence of gyroscopic and centrifugal forces from all rotating parts due to speed are considered. The bearing stiffness, mode shapes, Frequency Response Function at any point on the spindle can be predicted. The static and dynamic deflections along the spindle shaft as well as contact forces on the bearings can be predicted with simulated cutting forces before physically building and testing the spindles. The spacing of the bearings are optimized to achieve either maximum dynamics stiffness or maximum chatter free depth of cut at the desired speed region for a given cutter geometry and work-piece material. It is possible to add constraints to model mounting of the spindle on the machine tool, as well as defining local springs and damping elements at any nodal point on the spindle. The model is verified experimentally.  相似文献   

2.
Expert spindle design system   总被引:8,自引:0,他引:8  
This paper presents an expert spindle design system strategy which is based on the efficient utilization of past design experience, the laws of machine design, dynamics and metal cutting mechanics. The configuration of the spindle is decided from the specifications of the workpiece material, desired cutting conditions, and most common tools used on the machine tool. The spindle drive mechanism, drive motor, bearing types, and spindle shaft dimensions are selected based on the target applications. The paper provides a set of fuzzy design rules, which lead to an interactive and automatic design of spindle drive configurations. The structural dynamics of the spindle are automatically optimized by distributing the bearings along the spindle shaft. The proposed strategy is to iteratively predict the Frequency Response Function (FRF) of the spindle at the tool tip using the Finite Element Method (FEM) based on the Timoshenko beam theory. The predicted FRF of the spindle is integrated to the chatter vibration stability law, which indicates whether the design would lead to chatter vibration free cutting operation at the desired speed and depth of cut for different flutes of cutters. The arrangement of bearings is optimized using the Sequential Quadratic Programming (SQP) method.  相似文献   

3.
High speed machining (HSM) is a promising technology for drastically increasing productivity and reducing production costs. Development of high-speed spindle technology is strategically critical to the implementation of HSM. Compared to conventional spindles, motorized spindles are equipped with built-in motors for better power transmission and balancing to achieve high-speed operation. However, the built-in motor introduces a great amount of heat into the spindle system as well as additional mass to the spindle shaft, thus complicating its thermo-mechanical-dynamic behaviors. This paper presents an integrated model with experimental validation and sensitivity analysis for studying various thermo-mechanical-dynamic spindle behaviors at high speeds. Specifically, the following effects are investigated: the bearing preload effects on bearing stiffness, and subsequently on overall spindle dynamics; high-speed rotational effects, including centrifugal forces and gyroscopic moments on the spindle shaft and, subsequently, on overall spindle dynamics; and the spindle dynamics on the cutting point receptance. The proposed integrated model is a useful tool for differentiating quantitatively different effects on the spindle behaviors. The results show that a motorized spindle softens at high speeds mainly due to the centrifugal effect on the spindle shaft.  相似文献   

4.
Thermo-mechanical model of spindles   总被引:9,自引:0,他引:9  
This paper presents a Finite-Element-method-based thermo-mechanical model of spindles with rolling bearings. The heat generated in the bearings and the motor is transferred to the ambient air, the motor coolant and the spindle structure, and causes thermal expansion of spindle parts. The experimentally validated thermo-mechanical spindle model predicts temperature distribution and thermal growth, as well as bearing stiffness and contact loads, under specified operating conditions. Transient changes in temperatures, deformations, viscosity of the lubricant, and bearing stiffness are considered in the solution. The predicted bearing properties are used to estimate the changes in the dynamic behavior of spindles.  相似文献   

5.
In this paper, the characterizing and modeling of the thermal growth of a motorized high speed spindle is reported. A motorized high speed spindle has more complicated dynamic, non-stationary and speed-dependent thermal characteristics than conventional spindles. The centrifugal force and thermal expansion occurring on the bearings and motor rotor change the thermal characteristics of the built-in motor, bearings and assembly joints. It was found that conventional static models using regression analysis and artificial neural network failed to give satisfactory model accuracy and robustness. An auto-regression dynamic thermal error model, that considers the temperature history and spindle-speed information, has been proposed and proved to improve the model accuracy. However, it was found that temperature-based thermal error models, that correlated thermal displacement of the rotating cutting tool to the temperature measurements on the spindle housing, were not robust. Many nonlinear and time-varying thermal sources, such as coolant jacket, motor air gap, motion joints and assembly interfaces influence thermal displacement. The relationship between temperature measurements and thermal displacements is highly nonlinear, time-varying and non-stationary. A new thermal model which correlates the spindle thermal growth to thermal displacements measured at some locations of the rotating spindle shaft has been proposed. It was found that the displacement-based thermal error model has much better accuracy and robustness than the temperature-based model.  相似文献   

6.
High cutting speeds and feeds are essential requirements of a machine tool structure to accomplish its basic function which is to produce a workpiece of the required geometric form with an acceptable surface finish at as high a rate of production as is economically possible. Since bearings in high speed spindle units are the main heat source of total cutting system, in this work, the thermal characteristics of the spindle bearing system with a tilting axis were investigated using finite element method to improve the performance of the spindle bearing system. Based on the numerical results, a specially designed prototype spindle bearing system was manufactured. Using the manufactured spindle bearing system, the thermal characteristics were measured and compared to the numerical results. From the comparison of the numerical results with the experimental results, it was found that the finite element method predicted well the thermal characteristics of the spindle bearing system.  相似文献   

7.
This work presents the effects of bearing configuration on the thermo-dynamic behavior of high speed spindles using the comprehensive dynamic thermo-mechanical model. The dynamic thermo-mechanical model consists of a comprehensive bearing dynamic model, a shaft dynamic model and a thermal model. The thermal model is coupled with the spindle dynamic model through bearing heat generation and thermal expansion of the whole system based on the bearing configuration. Thus the entire model becomes a comprehensive dynamic thermo-mechanical model. The new thermo-mechanical model also considers a pertinent mapping between bearing stiffness and shaft stiffness matrices based on bearing configurations, so that more general cases of bearing configurations can be modeled. Based on this model, the effects of bearing orientation on the spindle dynamics are systematically described and experimentally validated. It is shown that bearing orientation has a significant effect on spindle stiffness. Finally, the effects of various bearing configurations on spindle thermal and dynamic behavior are illustrated through numerical analysis with three different spindles.  相似文献   

8.
研究了3种电主轴的辐射噪声特性。通过实验测量了电主轴辐射噪声,分析了全陶瓷轴承电主轴、钢轴承电主轴和无内圈式陶瓷轴电主轴辐射噪声的时频特性。实验结果表明:提高旋转速度,全陶瓷轴承电主轴与钢轴承电主轴辐射噪声均呈增大趋势,且辐射噪声中含有旋转频率和2倍转频特征,而无内圈式陶瓷轴电主轴的辐射噪声呈现波动式变化,其声压级高于其他2种电主轴,且频谱较为杂乱;在高转速时全陶瓷轴承电主轴声波具有明显的周期性;3种电主轴辐射噪声中均具有较高的摩擦与冲击噪声。  相似文献   

9.
林伟铖  尹玲  张斐  吕峥 《机床与液压》2023,51(13):58-62
为了提高热误差模型的预测精度和减少布置在机床内部的温度传感器数量,提出一种基于单个温度传感器数据的主轴轴向热误差辨识模型。该模型的输入由单个温度传感器采集的数据处理生成,内部参数少,利用智能优化算法的全局寻优能力辨识模型参数,减少人工干预,使得模型泛化性更强。以某型号三轴机床为实验对象,通过机床切削工件,验证模型辨识效果。通过与神经网络主轴热误差预测模型对比分析及实验验证,结果表明:提出的热误差模型预测主轴轴向热误差的残差较小,预测精度较高,且具有内部参数少和泛化能力强等优点,可支持数控机床的集成应用。  相似文献   

10.
运用APDL建立机床主轴的参数化有限元模型,应用ANSYS优化设计功能,以主轴的重量为优化目标,对主轴的支承跨距、外径、悬伸长度和传动件安装位置进行了优化计算,并对优化结果进行了分析.结果表明:主轴结构优化后,在保证机床各种性能的前提下,主轴重量得到有效的减小.  相似文献   

11.
Increasing productivity in machining process demands high material removal rate in stable cutting conditions and depends strongly on dynamic properties of machine tool structure. Combined analytical–experimental procedures based on receptance coupling substructure analysis (RCSA) are employed to determine the stability of machine operating conditions at different tool configurations. The RCSA employs holder–spindle experimental mobility measurements in conjunction with an analytical model for the tool to predict the dynamics of different sets of tool and holder–spindle combinations without the need for repeated mobility measurements. In this paper an alternative approach using the concept of tool on resilient support is adopted to predict the machine tool dynamics in various tool configurations. In the proposed model the tool, represented by an analytical model, is partly resting on a resilient support provided by the holder–spindle assembly. The support dynamic flexibility is measured by performing vibration tests on the holder–spindle assembly. Tool–holder joint interface characteristics are included in the model by considering a distributed elastic interface layer between the holder–spindle and the tool shank part. The distributed interface layer takes into account the change in normal contact pressure along the joint interface and comparing with the lumped joint model used in RCSA it allows more detailed representation of the joint interface flexibility and damping which have crucial roles in machine dynamics. Experiments are conducted to demonstrate the efficiency of proposed model in prediction of milling operation dynamics and it is shown that the model is capable of accurately predicting the dynamic absorber effect of spindle in a tool tuning practice.  相似文献   

12.
For high speed and high efficiency machining, the spindle of modern machine tools simultaneously requires high speed and high stiffness characteristics, and its range of use rotation is becoming wider. Both heavy cutting at low speed and light cutting at high speed must be carried out successively in series with a single machine tool spindle. As such, many studies are being carried out on variable preload control methods that apply a preload to a spindle rolling bearing, as an alternative to the existing fixed position preload and constant pressure preload methods. This paper introduces a newly structured variable preload control device that can arbitrarily adjust the preload applied to spindles employing a rolling bearing. The device controls the coil current on an electromagnet and thereby uses the magnetic force between the electromagnet and a magnetic substance to arbitrarily control the preload applied to the rolling bearing during operation. A prototype for the variable preload control device of the proposed structure was created and a functionality test was then carried out with a test bench prepared using a load cell. The operating principle of the proposed device was verified and the interrelationships between the coil current on the electromagnet and the preload applied to rolling bearing were analyzed through the functionality test. Lastly, the fabricated variable preload control device was applied to a prototype of a spindle system, and a rigidity test was carried out. The test results confirmed that the variable preload control device operates properly and smoothly.  相似文献   

13.
本文根据某大型数控机床主轴不等截面及主轴工作时轴承支座产生小弹性变形的特征建立主轴计算模型,并以超静定法及强度理论计算及校验最不利工况下机床主轴的强度。本文介绍的计算方法对同类机床主轴的设计、强度及刚度校验具有实际参考价值。  相似文献   

14.
Signal analysis of surface roughness in diamond turning of lens molds   总被引:1,自引:0,他引:1  
Diamond turning of high-precision lens molds is an important production process. The surface roughness of the mold heavily affects the quality of lens. In diamond turning, the surface roughness obtained depends on the cutting tool, the cutting conditions, the machine characteristics, the surrounding vibrations and the work piece material. This work studies the surface roughness obtained from the diamond turning of a phosphor–bronze lens mold with various tool nose radii, spindle speeds, feed rates and cutting depths. The surface roughness was measured in the time domain using a Form Talysurf instrument (a stylus-type surface roughness meter) and then transformed into the frequency domain using the fast Fourier transform. Based on the magnitude of the intensity, the tool geometry, low-frequency vibration and the measuring instrument are identified as the main influencing factors of the generated surface roughness. The intensities associated with the latter two vary little with the cutting conditions and are thus considered constant. The intensity of the tool geometry varies with the feed rate, the spindle speed and the radius of the tool nose. A relationship between the root-mean-square summation of the surface roughness and cutting conditions was found. The model agrees well with the experimental results. The analysis also identified the critical feed rate that maximized machining productivity, below which the surface roughness was only slightly improved as the production rate fell sharply.  相似文献   

15.
Prevention of catastrophic bearing failures caused by excessive thermally induced preload is one of the key issues in the design and operation of high speed spindles. Temperature monitoring and shutting the spindle off in hazardous conditions is at present the most common method of avoiding bearing seizure. However, due to a rapid heat built-up and measurement delay, this solution in not reliable. An improved protection can be achieved either by custom systems with springs or hydraulic actuators that maintain a steady preload, or by monitoring the instantaneous preload and appropriate, predictive adjustment of machining conditions. While the former approach increases the cost of spindles and degrades their potential reliability, monitoring and proactive control of the actual preload eliminates these disadvantages. Its feasibility is predicated upon fast, reliable and accurate in-process preload estimation. A suitable estimation algorithm proposed in this paper employs vibrations of the spindle housing measured by means of accelerometer(s) and analyzed in the context of mechanical multi-degree-of-freedom model of the spindle assembly treated as a component of the entire machine tool. Representative experimental results are presented.  相似文献   

16.
This article presents a method of measuring cutting forces from the displacements of rotating spindle shafts. A capacitance displacement sensor is integrated into the spindle and measures static and dynamic variations of the gap between the sensor head and the rotating spindle shaft under cutting load. To calibrate the sensing system, the tool is loaded statically while the deflection of the tool is measured with the capacitance probe. With this calibration, the displacement sensor can be used as an indirect force sensor. However, the measurement bandwidth is limited by the natural modes of the spindle structure. If cutting force frequency contents are within the range of the natural modes of the spindle structure or higher, the measurements are distorted due to the dynamic characteristics of the spindle system. In order to increase the bandwidth of the indirect force sensor by compensating for the spindle dynamics, the design of a Kalman filter scheme, which is based on the frequency response function (FRF) of the displacement sensor system to the cutting force, is presented in this paper. With the suggested sensing and signal processing method, the frequency bandwidth of the sensor system is increased significantly, from 350 to approximately 1000 Hz. The proposed indirect force sensor system is tested experimentally by conducting cutting tests up to 12,000 rpm with a five-fluted end mill. Besides cutting forces, the measured displacements can also be affected by factors such as roundness errors, unbalance at different speeds, or dilatation of the spindle shaft due to temperature variations. Methods to compensate for these disturbing effects are also described in the paper.  相似文献   

17.
Bearing load analysis and control of a motorized high speed spindle   总被引:6,自引:1,他引:6  
Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers. Because the bearing load is increased rapidly with the raised spindle speed due to the centrifugal force and temperature raise, proper initial preload and especially operating-induced load control of the angular ball bearing is important to the rigidity, accuracy and life of the spindle. The bearing layout, preload mechanism an on-line load bearing control are discussed in this paper. The management of the centrifugal force and thermally-induced bearing loads is especially emphasized. An active bearing load monitoring and control mechanism that consists of an integrated strain-gage load cells and piezoelectric actuators has been developed and tested. This active control and monitoring mechanism on-line adjusts the bearing load according the cutting conditions. Experiments were conducted to identify the proper initial bearing preload range. Optimal preload for the lowest bearing temperature raise existed for a specified spindle speed. The optimum preload, however, should be raised when the operational speed is increased.  相似文献   

18.
滑枕是影响数控龙门镗铣床加工精度的关键部件。针对切削加工中存在的实际问题,确立导致滑枕热变形的热源,对轴承生热率进行计算,建立热变形数学模型;对滑枕进行热性能分析,并对主轴轴系结构进行改进。结果表明:滑枕的最高温度在主轴轴承支承处,为64.13℃;滑枕的最大的热变形在主轴轴承支承端,为38.9μm;采用冷却套结构、后轴承自由支承方式,减小主轴、滑枕热变形,从而提高数控龙门镗铣床加工精度。  相似文献   

19.
This paper presents modelling of moving sleeve and spindle tip displacements in spindle bearing systems equipped with angular contact ball bearings. The balance of axial forces produced in high-speed bearings is examined, with a particular consideration of centrifugal forces, gyroscopic moments, contact deformations, and contact angles. It has been shown that centrifugal forces acting on bearing balls do not cause sleeve axial shifts. Those sleeve shifts can only result from gyroscopic moments, and changes in spindle dimensions due to centrifugal forces. The proposed model has been verified experimentally, and can be used for compensation of spindle tip displacements.  相似文献   

20.
建立了落地铣镗床主轴系统的模型,研究主轴径向变形;对落地铣镗床主轴轴承寿命、主轴大齿轮对轴承刚度和主轴变形的影响进行分析,并对轴承配置进行了优化分析,为轴承组合方式的选用以及大齿轮支承的合理配置提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号