首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Thermodynamic modelling of the Pb–Yb binary system was carried out with the help of the CALPHAD method. The liquid phase has been described with the association solution model with ‘ Pb1Y b2’ as an associated complex. The solution phases BCC_A2 and FCC_A1 were modelled with the sublattice formalism. The αPbYb_LT and βPbYb_HT Pb sub-stoichiometric intermetallic compounds, which have a homogeneity range, were treated with the formula (Pb,Y b)0.5(Y b)0.5 by a two-sublattice model with Pb and Yb on the first sublattice and Yb on the second one. Pb3Y b, Pb3Y b5 and PbY b2 have been treated as stoichiometric compounds. The calculations based on the thermodynamic modelling are in good agreement with the phase diagram data and experimental thermodynamic values.  相似文献   

4.
5.
The Al-Li-Zn system was critically assessed using the CALPHAD technique. The solution phases (liquid, bcc, fcc and hcp) were described by the substitutional solution model. The compounds Al2Li3 and Al4Li9 in the Al-Li system had homogeneity ranges of Zn and were treated as (Al,Zn)2Li3 and (Al,Zn)4Li9 in the Al-Li-Zn system, respectively. The compounds αLi2Zn3, βLi2Zn3, αLi2Zn5, βLi2Zn5 and αLiZn4 in the Li-Zn system had no solubility of the third component Al in the Al-Li-Zn system. A two-sublattice model (Al,Li,Zn)0.2(Al,Li,Zn)0.8 was applied to describe the compound βLiZn4 in the Al-Li-Zn system in order to cope with the order-disorder transition between hexagonal close-packed solution (hcp-A3) and βLiZn4 with the Mg-type structure. The ternary compound τ2 with a NaTl-type structure (B32) had the same structure with the compounds AlLi in the binary Al-Li system and LiZn in the binary Li-Zn system. In the present work, the three compounds AlLi, LiZn and τ2 were treated as one phase by a two-sublattice model (Al,Li,Zn)0.5(Al,Li,Zn)0.5 in order to cope with the order-disorder transition between B32(AlLi, LiZn and τ2) and body-centered cubic solid solution (bcc-A2). The ternary intermetallic compounds τ1 and τ3 in the Al-Li-Zn system were treated as the formula Li(Al,Zn)2 and (AlLi,Zn)Zn3, respectively. A set of self-consistent thermodynamic parameters describing the Gibbs energy of each individual phase as a function of composition and temperature in the Al-Li-Zn system was obtained.  相似文献   

6.
7.
8.
The phase diagram and thermodynamic properties of the Au–Ni system have been assessed from experimental thermodynamic and phase diagram data by means of the CALPHAD method. A consistent set of thermodynamic parameters for each phase was obtained. Good agreement is reached between the calculated and experimental results. The calculated congruent point is 1214.3 K and 42.6 at.% Ni and the critical point of the miscibility gap is 1089.5 K and 73.0 at.% Ni.  相似文献   

9.
10.
11.
12.
L.L. Xu  J. Wang  H.S. Liu  Z.P. Jin 《Calphad》2008,32(1):101-105
The Pt–Si binary system was thermodynamically assessed using the CALPHAD method based on the available experimental data from the literature. The solution phases, including Liquid, Fcc_A1 (Pt) and Diamond_A4 (Si), were treated as substitutional solution phases, of which the excess Gibbs energies were expressed with Redlich–Kister polynomial functions. Meanwhile, the intermetallic compounds, PtSi, Pt6Si5, Pt2Si, Pt17Si8, Pt5Si2, Pt3Si and Pt25Si7, were modeled as stoichiometric compounds. Subsequently, a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases were obtained and the calculated values of phase diagram and thermodynamics were found to be in reasonable agreement with experimental data.  相似文献   

13.
Mei Li  Wei Han 《Calphad》2009,33(3):517-520
The Dy–Ni binary system has been thermodynamically assessed by means of the computer program Thermo-Calc. The Redlich–Kister polynomial was used to describe the solution phase, liquid (L). Ten compounds, Dy3Ni, Dy3Ni2, DyNi, DyNi2, DyNi3, Dy2Ni7, DyNi4, Dy4Ni17, DyNi5 and Dy2Ni7, were treated as stoichiometric phases. The parameters of the Gibbs energy expressions were optimized according to all the available experimental information of both the equilibrium data and the thermodynamic results. A set of self-consistent thermodynamic parameters of the Dy–Ni system has been obtained. The calculations agree well with the respective experimental data.  相似文献   

14.
15.
The Bi-Te phase diagram was determined by equilibrium alloy method, combined with electron probe microanalysis (EPMA), X-ray diffraction (XRD) and thermal analysis (DSC). The experimental result shows that there is a β-phase with a large composition range at low temperature, while Bi2Te and Bi4Te3 are relatively stable in the solid-liquid region. A consistent phase diagram that covers the experimental findings has been achieved. Based on the new experimental phase diagram, coupling with the reported thermodynamic data, the thermodynamic optimization of the Bi-Te binary system was carried out with the help of CALPHAD approach. A group of reasonable thermodynamic parameters was obtained.  相似文献   

16.
The thermodynamic optimizations of the Nd-Sn and Sn-Tb binary systems were carried out by means of the Calculation of Phase Diagram (CALPHAD) method on the basis of the available experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, bct, dhcp and hcp phases were described by the substitutional solution model with the Redlich-Kister equation, while all of the intermetallic compounds (Nd5Sn3, Nd5Sn4, Nd11Sn10, NdSn, Nd3Sn5, NdSn2, Nd3Sn7, Nd2Sn5, NdSn3, Sn3Tb, βSn7Tb3, αSn7Tb3, Sn2Tb, Sn5Tb4, SnTb4, Sn10Tb11, Sn4Tb5 and Sn3Tb5) were described by the sublattice model. A set of self-consistent thermodynamic parameters of each phase in the Nd-Sn and Sn-Tb binary systems has been obtained, and the calculated results are in good agreement with the available experimental data.  相似文献   

17.
The two Ce–Sb and Ce–Fe binary systems have been evaluated using the calculation of phase diagram method (CALPHAD). All of the binary compounds are treated as stoichiometric compounds. Solution phases are described with an ordinary substitutional solution model. The model parameters were derived from an optimization procedure using all available experimental data. The reproduction of the thermochemical and phase diagram information is reported in a series of figures and tables.  相似文献   

18.
19.
The Cu-Cr-Zr ternary system was investigated via thermodynamic modeling coupled with key experiments. The isothermal section of the Cu-Cr-Zr system at 1123 K was determined by means of optical microscopy, X-ray diffraction and electron probe microanalysis, and the phase transformation temperatures were measured by differential scanning calorimetry. The Cu-Cr sub-binary system was re-assessed with a substitutional solution model for the solution phases to ensure its compatibility in multi-component system. A set of self-consistent thermodynamic parameters for the Cu-Cr-Zr systems was obtained using the CALPHAD (CALculation of PHAse Diagram) approach, and the calculated phase diagram is in a satisfactory agreement with the present experimental results and literature information. An increase of the thermodynamic stability for the CuZr and Cr2Zr phases due to the ternary solubility is verified by calculation.  相似文献   

20.
To develop novel Nd-Fe-B-based permanent magnets with rare earth (RE) metals, phase equilibria and thermodynamic information of multi-component RE-Fe-B-based alloy systems is indispensable. In this work, thermodynamic assessment of the RE-B (RE=Ho, Er, Tm) binary systems as the important binary systems in the RE-Fe-B-based alloy systems were carried out using the CALPHAD (Calculation of Phase Diagram) method. The solution phases including liquid, hcp(α-Ho, α-Er and α-Tm) and rhombohedral(β-B) in the RE-B (RE=Ho, Er, Tm) binary systems are modeled by the substitutional solution model. The intermetallic compounds, HoB2, HoB4, HoB6, HoB12, HoB66, ErB2, ErB4, ErB12, ErB66, TmB2, TmB4, TmB12 and TmB66, are treated as the stoichiometric compounds. Self-consistent thermodynamic parameters to describe Gibbs energies of phases in the RE-B (RE=Ho, Er, Tm) binary systems were obtained finally. The calculated results agree well with the reported data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号