首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nb2O5-doped (1 − x)Ba0.96Ca0.04TiO3-xBiYO3 (where x = 0.01, 0.02, 0.03 and 0.04) lead-free PTC thermistor ceramics were prepared by a conventional solid state reaction method. X-ray diffraction, scanning electron microscope, Agilent E4980A and resistivity-temperature measurement instrument, were used to characteristic the lattice distortion, microstructure, temperature dependence of permittivity and resitivity-temperature dependence. It was revealed that the tetragonality c/a of the perovskite lattice, the microstructure and the Curie temperature changed with the BiYO3 content. In order to decrease the room temperature resistivity, the effect of Nb2O5 on the room temperature resistivity was also studied, and its optimal doping content was finally chosen as 0.2 mol%. The 0.97Ba0.96Ca0.04TiO3-0.03BiYO3-0.002Nb2O5 thermistor ceramic exhibited a low ρRT of 3.98 × 103 Ω cm, a typical PTCR effect of ρmax/ρmin > 103 and a Tc of 153 °C.  相似文献   

2.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

3.
N-type Fe2O3 nanobelts and P-type LaFeO3 nanobelts were prepared by electrospinning. The structure and micro-morphology of the materials were characterized by X-ray diffraction (XRD) and scanning of electron microscopy (SEM). The gas sensing properties of the materials were investigated. The results show that the optimum operating temperature of the gas sensors fabricated from Fe2O3 nanobelts is 285 °C, whereas that from LaFeO3 nanobelts is 170 °C. Under optimum operating temperatures at 500 ppm ethanol, the response of the gas sensors based on these two materials is 4.9 and 8.9, respectively. The response of LaFeO3-based gas sensors behaves linearly with the ethanol concentration at 10-200 ppm. Sensitivities to different gases were examined, and the results show that LaFeO3 nanobelts exhibit good selectivity to ethanol, making them promising candidates as practical detectors of ethanol.  相似文献   

4.
Nanoplates of α-SnWO4 and SnW3O9 were selectively synthesized in large scale via a facile hydrothermal reaction method. The final products obtained were dependent on the reaction pH and the molar ratio of W6+ to Sn2+ in the precursors. The as-prepared nanoplates of α-SnWO4 and SnW3O9 were characterized by X-ray powder diffraction (XRD), N2-sorption BET surface area, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The XPS results showed that Sn exists in divalent form (Sn2+) in SnW3O9 as well as in α-SnWO4. The gas-sensing performances of the as-prepared α-SnWO4 and SnW3O9 toward H2S and H2 were investigated. The hydrothermal prepared α-SnWO4 showed higher response toward H2 than that prepared via a solid-state reaction due to the high specific surface area. The gas-sensing property toward H2S as well as H2 over SnW3O9 was for the first time reported. As compared to α-SnWO4, SnW3O9 exhibits higher response toward H2S and its higher response can be well explained by the existence of the multivalent W (W6+/W4+) in SnW3O9.  相似文献   

5.
Large-scale novel core-shell structural SnO2/ZnSnO3 microspheres were successfully synthesized by a simple hydrothermal method with the help of the surfactant poly(vinyl pyrrolidone) PVP. The as-synthesized samples were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results indicate that the shell was formed by single crystalline ZnSnO3 nanorods and the core was formed by aggregated SnO2 nanoparticles. The effects of PVP and hydrothermal time on the morphology of SnO2/ZnSnO3 were investigated. A possible formation mechanism of these hierarchical structures was discussed. Moreover, the sensor performance of the prepared core-shell SnO2/ZnSnO3 nanostructures to ethanol was studied. The results indicate that the as-synthesized samples exhibited high response and quick response-recovery to ethanol.  相似文献   

6.
The liquidus in the high basicity region in the Al2O3(30 mass%)-CaO-MgO-SiO2 system were determined experimentally at 1773 and 1873 K using the quench technique followed by EPMA analysis. Based on the experimental data, a phase diagram of the Al2O3(30 mass%)-CaO-MgO-SiO2(<20 mass%) section was constructed for 1773 and 1873 K. The solubilities of 2CaO.SiO2 and 3CaO.SiO2 at 1773 K were found to be considerably higher in comparison with the existing phase diagram. Even the solubility of MgO at 1873 K was found to be somewhat higher. In addition, the activities of MgO, CaO and Al2O3 at 1773 K were estimated using the phase diagram information.  相似文献   

7.
Au-doped WO3-based sensor for NO2 detection at low operating temperature   总被引:1,自引:1,他引:0  
Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).  相似文献   

8.
A complete review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of the MnO–SiO2–“ TiO2”–“ Ti2O3” systems at 1 bar pressure are presented. The molten oxide phase was described by the Modified Quasichemical Model. The Gibbs energies of the manganosite, spinel, pyrophanite and pseudobrookite and rutile solid solutions were taken from the previous study. A set of optimized model parameters for the molten oxide phase was obtained which reproduces all available reliable thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures over the entire range of compositions and oxygen partial pressure in the range of pO2 from 10−20 bar to 10−7 bar. Complex phase relationships in these systems have been elucidated, and discrepancies among the data have been resolved. The database of model parameters can be used along with software for Gibbs energy minimization in order to calculate any phase diagram section or thermodynamic properties.  相似文献   

9.
A complete review, critical evaluation, and thermodynamic optimization of the phase equilibrium and thermodynamic properties of the MnO–“ TiO2”–“ Ti2O3” systems at 1 bar pressure are presented. The molten oxide phase was described by the Modified Quasichemical Model. The Gibbs energy of spinel, pyrophanite and pseudobrookite solid solutions were modeled using the Compound Energy Formalism, and rutile solid solution was treated as a simple Henrian solution. Manganosite solid solution was assumed to dissolve both Ti4+ and Ti3+. A set of optimized model parameters for all phases was obtained which reproduces all available reliable thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures over the entire composition ranges and in the range of pO2 from 10−20 to 10−7 bar. Complex phase relationships in these systems have been elucidated, and discrepancies among the data have been resolved. The database of model parameters can be used along with software for Gibbs energy minimization in order to calculate any phase diagram section or thermodynamic properties.  相似文献   

10.
Fenghua  Heqing  Xiaoli  Li  Lihui  Jie  Hua  Bin 《Sensors and actuators. B, Chemical》2009,141(2):381-389
Hollow sea urchin-like α-Fe2O3 nanostructures were successfully synthesized by a hydrothermal approach using FeCl3 and Na2SO4 as raw materials, and subsequent annealing in air at 600 °C for 2 h. The hollow sea urchin-like α-Fe2O3 nanostructures with the diameters of 2–4.5 μm consist of well-aligned α-Fe2O3 nanorods with an average length of about 1 μm growing radially from the centers of the nanostructures, have a hollow interior with a diameter of about 2 μm. α-Fe2O3 nanocubes with a diameter of 700–900 nm were directly obtained by a hydrothermal reaction of FeCl3 at 140 °C for 12 h. The response Sr (Sr = Ra/Rg) of the hollow sea urchin-like α-Fe2O3 nanostructures reached 2.4, 7.5, 5.9, 14.0 and 7.5 to 56 ppm ammonia, 32 ppm formaldehyde, 18 ppm triethylamine, 34 ppm acetone, and 42 ppm ethanol, respectively, which was excess twice that of the α-Fe2O3 nanocubes and the nanoparticle aggregations. Our results demonstrated that the hollow sea urchin-like α-Fe2O3 nanostructures were very promising for gas sensors for the detection of flammable and/or toxic gases with good-sensing characteristics.  相似文献   

11.
Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BNT-BKT) powder is synthesized by a metal-organic decomposition method and characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). A humidity sensor, which is consisted of five pairs of Ag-Pd interdigitated electrodes and an Al2O3 ceramic substrate, is fabricated by spin-coating the BNT-BKT powder on the substrate. Good humidity sensing properties such as high response value, short response and recovery times, and small hysteresis are observed in the sensing measurement. The impedance changes more than four orders of magnitude within the whole humidity range from 11% to 95% relative humidity (RH) at 100 Hz. The response time and recovery time are about 20 and 60 s, respectively. The maximum hysteresis is around 4% RH. The results indicate that BNT-BKT powder is of potential applications for fabricating high performance humidity sensors.  相似文献   

12.
Room temperature detection of CO2 using metal-insulator-silicon (MIS) devices is reported. These devices comprise atomic layer deposited La2O3 thin films as the gas-sensitive dielectric layer and Pt, Pt/Ta and Al as the electrodes. Physical mechanisms that lead to the detection of CO2 at room temperature are discussed.  相似文献   

13.
Nanocrystalline WO3/TiO2-based powders have been prepared by the high energy activation method with WO3 concentration ranging from 1 to 10 mol%. The samples were thermal treated in a microwave oven at 600 °C for 20 min and their structural and micro-structural characteristics were evaluated by X-ray diffraction, Raman spectroscopy, EXAFS measurements at the Ti K-edge, and transmission electron microscopy. Nitrogen adsorption isotherms and H2 Temperature Programmed Reduction were also carried out for physical characterization. The crystallite and particle mean sizes ranged from 30 to 40 nm and from 100 to 190 nm, respectively. Good sensor response was obtained for samples with at least 5 mol% WO3 activated for at least 80 min. Ceramics heat-treated in microwave oven for 20 min have shown similar sensor response as those prepared in conventional oven for 120 min, which is highly cost effective. These results indicate that WO3/TiO2 ceramics can be used as a humidity sensor element.  相似文献   

14.
In2O3 hollow spheres with shell thicknesses of ∼150 nm and ∼300 nm were prepared by the one-pot synthesis of indium-precursor-coated carbon spheres via hydrothermal reaction and subsequent removal of core carbon by heat treatment. The gas response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) of the thin hollow spheres to 100 ppm C2H5OH was 137.2 at 400 °C, which was 1.86 and 3.84 times higher than that of the thick hollow spheres and of the nanopowders prepared by precipitation, respectively. The gas sensing characteristics are discussed in relation to the shell configuration of the hollow spheres. The enhanced gas response of the hollow spheres was attributed to the effective diffusion of analyte gas toward the entire sensor surface via very thin and nano-porous shells.  相似文献   

15.
Tungsten-coated carbon microspheres were prepared by one-pot hydrothermal reaction of an aqueous solution containing glucose and sodium tungstate. The spheres were converted into WO3 hollow microspheres by the decomposition of their core carbon. The [glucose]/[sodium tungstate] ratio of the stock solution determined not only the morphology of the precursors but also the phase of the powders after calcination. The WO3 hollow microspheres showed a higher gas response and more selective detection of 0.5–2.5 ppm NO2 than WO3 solid and nano-porous microspheres did. The enhanced NO2 sensing characteristics are explained in relation to the surface area, pore volume, and hollow morphology.  相似文献   

16.
This paper describes the preparation and characterization of unimorph actuators for deformable mirrors, based on Pb(Zr0.52Ti0.48)O3 (PZT52) thin film. As comparison, two different designs, where the PZT layer in the unimorph actuators was driven by either interdigitated electrodes (IDT-mode) or parallel plate electrodes (d31-mode), were investigated. The actuators utilize a unimorph membrane (diaphragm) structure consisting of an active PZT piezoelectric layer and a passive SiO2/Si composite layer. To fabricate the diaphragm structures, n-type (1 0 0) silicon-on-insulator (SOI) wafers with 1 μm thermal SiO2 were used as substrates (for d31-mode actuators, the upper Si part of SOI need to be heavily doped and used as bottom electrodes simultaneously). Sol-gel derived PZT piezoelectric layers with PbTiO3 (PT) bufferlayer in total of 0.86 μm were then fabricated on them, and 0.15 μm Al reflective layers were deposited and patterned into top electrode geometries, subsequently. The diaphragms were released using orientation-dependent wet etching (ODE) with 5-10 μm residual silicon layers. The complete unimorph actuators comprise 4 × 4 discrete units (4 mm2 in size) with patterned PZT films for parallel plate configuration or 3 × 3 individual pixels (2 mm in IDT diameter) with continuous PZT films in graphic region for IDT configuration. The measurement results indicated that both of the two configurations can generate considerable deflections at low voltage. The measured maximum central deflections at 15 V were approximately 2.5 μm and 2.8 μm, respectively. The intrinsic strain conditions shaping the deflection profiles for the diaphragm actuators were also analyzed. In this paper, the behaviors of clamped parallel plate configuration without a diaphragm were also evaluated.  相似文献   

17.
Co3O4-based nanosystems were prepared on polycrystalline Al2O3 by plasma enhanced-chemical vapor deposition (PE-CVD), at temperatures ranging between 200 and 400 °C. The use of two different precursors, Co(dpm)2 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) and Co(hfa)2·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) enabled the synthesis of undoped and fluorine-doped Co3O4 specimens, respectively. A thorough characterization of their properties was performed by glancing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). For the first time, the gas sensing properties of such PE-CVD nanosystems were investigated in the detection of ethanol and acetone. The results show an appreciable response improvement upon doping and functional performances directly dependent on the fluorine content in the Co3O4 system.  相似文献   

18.
19.
The influences of La2O3 loading on the ethanol sensing properties of SnO2 nanorods were investigated. An obvious enhancement of response was obtained. The response of 5 wt% La2O3 loaded SnO2 nanorods was up to 213 for 100 ppm ethanol at low working temperature of 200 °C, while that of pure SnO2 nanorods is 45.1. The improvement in response might be attributed to the presence of basic sites, which facilitated the dehydrogenation process. While the working temperature was increased to 300 °C, the sensor response decreased to 16 for 100 ppm ethanol. Additionally, the La2O3 loaded SnO2 nanorods sensors showed good selectivity to ethanol over methane and hydrogen. Our results demonstrated that the La2O3 loaded SnO2 nanorods were promising in fabricating high performance ethanol sensors which could work at low temperature.  相似文献   

20.
In-Ho Jung  Youn-Bae Kang 《Calphad》2011,35(2):255-257
The MnO-Al2O3 system is very important for the non-metallic inclusion controls in steelmaking and the slag chemistry for high Mn alloy production. Farina and Neto presented their recent thermodynamic assessment on the MnO-Al2O3 system using a two-sublattice ionic liquid model for liquid oxide phase and the Compound Energy Formalism for solid phases. However, we found several doubts and mistakes in their assessment in particular related to the Gibbs energy of MnAl2O4 spinel phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号