首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For unknown mobile radio channels with severe intersymbol interference (ISI), a maximum likelihood sequence estimator, such as a decision feedback equalizer (DFE) having both feedforward and feedback filters, needs to handle both precursors and postcursors. Consequently, such an equalizer is too complex to be practical. This paper presents a new reduced-state, soft decision feedback Viterbi equalizer (RSSDFVE) with a channel estimator and predictor. The RSSDFVE uses maximum likelihood sequence estimation (MLSE) to handle the precursors and truncates the overall postcursors with the soft decision of the MLSE to reduce the implementation complexity. A multiray fading channel model with a Doppler frequency shift is used in the simulation. For fast convergence, a channel estimator with fast start-up is proposed. The channel estimator obtains the sampled channel impulse response (CIR) from the training sequence and updates the RSSDFVE during the bursts in order to track changes of the fading channel. Simulation results show the RSSDFVE has nearly the same performance as the MLSE for time-invariant multipath fading channels and better performance than the DFE for time-variant multipath fading channels with less implementation complexity than the MLSE. The fast start-up (FS) channel estimator gives faster convergence than a Kalman channel estimator. The proposed RSSDFVE retains the MLSE structure to obtain good performance and only uses soft decisions to subtract the postcursor interference. It provides the best tradeoff between complexity and performance of any Viterbi equalizers  相似文献   

2.
Two modified decision feedback equalization (DFE) structures are presented for the efficient equalization of long sparse channels with strong precursor, such as those encountered in high-speed communications over multipath channels with large delay spread. Unlike the conventional DFE, these structures allow the channel's sparseness to be exploited by simple tap allocation, before the sparseness is degraded by feedforward filtering. Both structures yield large reductions in complexity while maintaining performance comparable to the conventional DPE, hence overcoming a key computational bottleneck when equalizers are implemented in hardware for speed. Fast channel estimate-based algorithms for computing the modified DFE coefficients are derived. Simulation results are presented for data rates and channel profiles of the type considered for the proposed North American high definition television (HDTV) terrestrial broadcast mode  相似文献   

3.
A decision feedback equaliser (DFE) structure based on wavelets (WBDFE) is presented. The WBDFE shows faster convergence than the conventional DFE, with a very small increase in computation. In addition, the WBDFE has good time-frequency localisation, and is suitable for time-varing channels  相似文献   

4.
This paper introduces an adaptive derision feedback equalization using the multilayer perceptron structure of an M-ary PSK signal through a TDMA satellite radio channel. The transmission is disturbed not only by intersymbol interference (ISI) and additive white Gaussian noise, but also by the nonlinearity of transmitter amplifiers. The conventional decision feedback equalizer (DFE) is not well-suited to detect the transmitted sequence, whereas the neural-based DFE is able to take into account the nonlinearities and therefore to detect the signal much better. Nevertheless, the applications of the traditional multilayer neural networks have been limited to real-valued signals. To overcome this difficulty, a neural-based DFE is proposed to deal with the complex PSK signal over the complex-valued nonlinear MPSK satellite channel without performing time-consuming complex-valued back-propagation training algorithms, while maintaining almost the same computational complexity as the original real-valued training algorithm. Moreover, a modified back-propagation algorithm with better convergence properties is derived on the basis of delta-bar-delta rule. Simulation results for the equalization of QPSK satellite channels show that the neural-based DFE provides a superior bit error rate performance relative to the conventional mean square DFE, especially in poor signal-to-noise ratio conditions  相似文献   

5.
An efficient bidirectional arbitrated decision feedback (BAD) equalizer is presented in single-carrier block transmission system in the Two-Ray multipath fading channels, where the output from the bidirectional equalizers are combined together directly using maximal ratio combining (MRC) rule to improve the signal-to-noise ratio (SNR) before demodulation. The computational complexity of the BAD equalizer presented is linear with the channel length, which is the same as conventional decision feedback equalizer (DFE) and is significantly lower than that of conventional BAD equalizer as well as the maximum likelihood (ML) algorithm. While the performance of the new scheme depends on the specific channel characteristics, it is shown by simulation results that the performance of the new BAD can surpass the one of DFE dramatically in the minimum or non-minimum phase Two-Ray multipath fading channels.  相似文献   

6.
针对一种全盲的判决反馈均衡器(DFE)进行研究,它对快速时变信道的均衡非常有效。利用基于二阶统计量(SOS)的子空间法来得到关于信道系数的确定性估计,然后利用这个估计值求出DFE抽头系数在MMSE意义上的最优解,以此进行DFE的初始化。相比传统的利用周期性训练序列初始化DFE的方法,文章提出的方法不仅节省了带宽资源,而且对于信道的突发性时变能够自适应地重新初始化,从而避免了DFE均衡器的病态收敛。  相似文献   

7.
In wireless communications, cochannel interference (CCI) and intersymbol interference (ISI) are two main factors that limit system performance. Conventionally, a beamformer is used to reduce CCI, whereas an equalizer is used to compensate for ISI. These two devices can be combined into one as space–time equalizer (STE). A training sequence is usually required to train the STE prior to its use. In some applications, however, spatial information corresponding to a desired user is available, but the training sequence is not. In this paper, we propose an adaptive decision feedback STE to cope with this problem. Our scheme consists of an adaptive decision feedback generalized sidelobe canceller (DFGSC), a blind decision feedback equalizer (DFE), and a channel estimator. Due to the feedback operation, the proposed DFGSC is not only superior to the conventional generalized sidelobe canceller but also robust to multipath channel propagation and spatial signature error. Theoretical results are derived for optimum solutions, convergence behavior, and robustness properties. With the special channel-aided architecture, the proposed blind DFE can reduce the error propagation effect and be more stable than the conventional blind DFE. Simulation results show that the proposed STE is effective in mitigating both CCI and ISI, even in severe channel environments.   相似文献   

8.
In this correspondence we determine an upper bound on the error recovery time of a decision feedback equalizer (DFE) operating on a high signal to noise ratio channel of exponential impulse response to be used for binary transmission. This bound is related to the channel time constant and we show that exponential impulse response channels form a favourable class of channels with regard to DFE error recovery properties.  相似文献   

9.
给出一种可以用于高速数字接收的特殊的判决反馈均衡器结构。为减少FIR内多径传播影响到ⅡR内的多径响应,而将部分ⅡR提前于FIR,以得到更快的系数收敛速度。在此基础上的数据仿真,比较了提前结构同普通结构的性能差异,验证了该结构可以使均衡器在严重畸变的信道条件下得到更快的收敛速度。最后,介绍了提前结构的最新的高清晰度电视8VSB接收机中的应用。  相似文献   

10.
On linear bandlimited Gaussian noise channels with sufficiently high SNR, channel capacity can be approached by combining powerful coded modulation schemes designed for Nyquist channels with the equalization power of decision-feedback equalization (DFE). However, this combination may not be realized in a straightforward manner, since, in general, DFE requires delay-free decisions for feedback, and in a coded system such decisions are not sufficiently reliable. A technique is proposed that combines periodic interleaving with noise-predictive DFE, so that delayed reliable decisions can be used for feedback. When sufficient delay in the interleavers can be tolerated, this technique can attain the DFE performance. On severely distorted channels, modest delays can be sufficient to obtain respectable gains over linear equalization  相似文献   

11.
A new transceiver for data transmission over multipath fading channels employing precoding and differential detection is investigated. This precoding scheme effectively functions as a decision feedback equalizer (DFE) for differentially coherent demodulation. The main advantage of the proposed scheme over the conventional DFE is its ability to compensate for fast channel phase variations  相似文献   

12.
Near-optimum soft decision equalization for frequency selective MIMO channels   总被引:11,自引:0,他引:11  
In this paper, we develop soft decision equalization (SDE) techniques for frequency selective multiple-input multiple-output (MIMO) channels in the quest for low-complexity equalizers with error performance competitive to that of maximum likelihood (ML) sequence detection. We demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered and linear in the signal constellation size. Building on the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. The first SDE algorithm adopts a zero-padded transmission structure to convert the challenging sequence detection problem into a block-by-block least-square formulation. It introduces key enhancement to the original PDA to enable applications in rank-deficient channels and for higher level modulations. The second SDE algorithm takes advantage of the Toeplitz channel matrix structure embodied in an equalization problem. It processes the data samples through a series of overlapping sliding windows to reduce complexity and, at the same time, performs implicit noise tracking to maintain near-optimum performance. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Simulation comparisons of our SDE methods with minimum-mean-square error (MMSE)-based MIMO DFE and sphere decoded quasi-ML detection are presented.  相似文献   

13.
A decision feedback equalizer (DFE) containing a feedback filter with both poles and zeros is proposed for high-speed digital communications over the subscriber loop. The feedback filter is composed of a relatively short FIR filter that cancels the initial part of the channel impulse response, which may contain rapid variations due to bridge taps, and a pole-zero, or IIR, filter that cancels the smoothly decaying tail of the impulse response. Modifications of an adaptive IIR algorithm, based on the Steiglitz-McBride (1965) identification scheme, are proposed to adapt the feedback filter. A measured subscriber loop impulse response is used to compare the performance of the adaptive pole-zero DFE, assuming a two-pole feedback filter, with a conventional DFE having the same number of coefficients. Results show that the pole-zero DFE offers a significant improvement in mean squared error relative to the conventional DFE. The speed convergence of the adaptive pole-zero DFE is comparable to that of the conventional DFE using the standard least mean square (LMS) adaptive algorithm  相似文献   

14.
We examine adaptive equalization and diversity combining methods for fast Rayleigh-fading frequency selective channels. We assume a block adaptive receiver in which the receiver coefficients are obtained from feedforward channel estimation. For the feedforward channel estimation, we propose a novel reduced dimension channel estimation procedure, where the number of unknown parameters are reduced using a priori information of the transmit shaping filter's impulse response. Fewer unknown parameters require a shorter training sequence. We obtain least-squares, maximum-likelihood, and maximum a posteriori (MAP) estimators for the reduced dimension channel estimation problem. For symbol detection, we propose the use of a matched filtered diversity combining decision feedback equalizer (DFE) instead of a straightforward diversity combining DFE. The matched filter form has lower computational complexity and provides a well-conditioned matrix inversion. To cope with fast time-varying channels, we introduce a new DFE coefficient computation algorithm which is obtained by incorporating the channel variation during the decision delay into the minimum mean square error (MMSE) criterion. We refer to this as the non-Toeplitz DFE (NT-DFE). We also show the feasibility of a suboptimal receiver which has a lower complexity than a recursive least squares adaptation, with performance close to the optimal NT-DFE  相似文献   

15.
判决反馈均衡器(Decision Feedback Equalizer,DFE)能补偿具有严重符号间干扰(Inter Symbol Interference,ISI)的信道,且不存在线性均衡器增强噪声的影响。而在其基础上改进的运用误差反馈的DFE,可利用误差反馈滤波器来减少传统DFE中存在的误差信号的相关性,同时其硬件实现的复杂度没有明显提高。理论分析和仿真表明,这种方法比传统的DFE更有效,特别是针对信道有严重符号间干扰的情况。  相似文献   

16.
Based on the fact that a decision feedback equaliser (DFE) can be divided into a linear equaliser and a prediction error filter with feedback, a new blind adaptation method for the DFE is proposed. The proposed method provides reliable convergence and the resulting symbol error rate is very close to that of the DFE using a training sequence  相似文献   

17.
This paper presents two types of adaptive lattice decisionfeedback equalizers (DFE), the least squares (LS) lattice DFE and the gradient lattice DFE. Their performance has been investigated on both time-invariant and time-variant channels through computer simulations and compared to other kinds of equalizers. An analysis of the self-noise and tracking characteristics of the LS DFE and the DFE employing the Widrow-Hoff least mean square adaptive algorithm (LMS DFE) are also given. The analysis and simulation results show that the LS lattice DFE has the faster initial convergence rate, while the gradient lattice DFE is computationally more efficient. The main advantages of the lattice DFE's are their numerical stability, their computational efficiency, the flexibility to change their length, and their excellent capabilities for tracking rapidly time-variant channels.  相似文献   

18.
A new nonlinear equalizer for high-density magnetic recording channels is presented. It has a structure of the decision-feedback equalizer (DFE) with a nonlinear model at the feedback section and a dynamic threshold detector. The feedback nonlinear model is a sequence of look-up tables (LUTs) indexed by time, and each table is addressed by a transition pattern formed by one future and ν past transitions. We call this new nonlinear equalizer the pattern-dependent DFE (PDFE). The feedback nonlinear model cancels the trailing nonlinear intersymbol interference (ISI), and then the data decision is made by considering the precursor nonlinear ISI caused by one future symbol. We propose a tap optimization criterion SNRd for the PDFE which in effect tries to maximize the output signal to noise ratio, and derive a closed-form solution for the tap values. We compare the detection performance of PDFE with that of the DFE and the RAM-DFE on experimental channels. The RAM-DFE is a DFE with one large LUT at its feedback section. The results show that the PDFE yields a significant performance improvement over the DFE and the RAM-DFE. Also the PDFE derived in this paper achieves a superior performance compared with the PDFE derived by the minimum mean-square-error criterion  相似文献   

19.
The paper investigates adaptive equalization of time-dispersive mobile radio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE  相似文献   

20.
The problem of channel equalization via channel identification (CEQCID) that has previously been considered by a handful of researchers is explored further. An efficient algorithm for mapping the channel parameters to the equalizers coefficients is proposed. The proposed scheme is compared with a lattice least squares (LS) based receivers. For the particular application of the high frequency (HF) radio channels, we find that the CEQCID has lower computational complexity. In terms of the tracking performance, also, the CEQCID has been found to be superior to the LS based receivers. We emphasize on the implementation of a fractionally tap-spaced decision feedback equalizer (DFE) and compare that with the T-spaced DFE. We show that the former is a better choice for the multipath HF channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号