首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针对神经网络在压电智能结构振动控制中的关键问题之一——系统模型的神经网络辨识,用引入时延的多层前馈BP神经网络串一并联型结构对表面粘贴压电片的柔性悬臂梁进行非线性动态系统模型辨识。考虑压电片对梁的质量和刚度矩阵的影响和实验提取数据的繁琐问题,用有限元分析软件ANSYS对智能梁进行模态和瞬态响应分析,利用获取的系统动力响应时间序列对神经网络进行离线训练,通过MATLAB神经网络工具箱对算例进行仿真显示。  相似文献   

2.
宋哲  陈文卿  徐志伟 《振动与冲击》2013,32(21):204-208
针对压电悬臂梁结构进行了基于神经网络在线辨识的振动主动控制研究。设计了基于NARMA-L2神经网络模型的在线辨识器和振动主动控制器,分析了神经网络各层的输入输出结构,建立了神经网络权值和阈值调整公式。在此基础之上,进行了外扰激励为单频和扫频信号时系统的在线辨识和振动主动控制实验,结果表明:该控制系统对悬臂梁的振动响应有较好的抑制作用和较强的鲁棒性。  相似文献   

3.
基于模糊控制的压电挠性梁的振动主动控制实验研究   总被引:1,自引:1,他引:1  
针对压电智能挠性悬臂梁进行了基于模糊振动控制研究.首先推导了压电智能挠性悬臂梁的控制方程.基于查表法设计振动模糊控制器,并在此基础上运用了一种修正技术提高模糊控制精度,提出采用修正Fuzzy-PI双模控制方法,设置信号阀值实现Fuzzy控制和PI控制的切换,设计了挠性悬臂梁振动主动控制算法.建立了压电智能挠性悬臂梁的实验平台,采用提出的控制方法对悬臂梁振动进行实验研究,实验结果表明:振动被快速抑制,系统的动态、稳态性能方面优于普通模糊控制器.  相似文献   

4.
杨智春  孙浩 《振动与冲击》2010,29(12):148-152
将结构拓扑优化引入压电分流振动抑制中,以压电元件的分布面积为设计变量,压电元件产生的电荷最大化为优化目标,对压电元件的拓扑进行了优化以获得最佳抑振效果。针对悬臂梁结构,得到了对不同的结构模态进行抑制时的压电元件最优拓扑构型。建立了带有压电分流阻尼系统的悬臂梁振动控制实验模型,将压电元件拓扑优化后的压电分流阻尼系统应用于悬臂梁多阶弯曲模态的振动响应抑制实验,并对比分析了带最优拓扑和非优拓扑压电元件的悬臂梁压电分流阻尼抑振效果。结果表明,对压电元件进行拓扑优化可以明显提高压电分流阻尼系统的抑振效果。  相似文献   

5.
压电陶瓷是具有驱动特性与传感特性的智能材料。在飞行器设计方面,智能结构的应用越来越广泛。怎样有效控制智能结构的振动成为近年来的研究重点。智能结构本身具有迟滞特性,建立迟滞智能结构的数学模型,并准确辨识其参数成为智能结构控制的基础。首先建立基于Bouc-Wen方程的智能柔性悬臂梁数学模型,其次使用遗传算法对数学模型的未知参数进行辨识,并且在SIMULINK平台上使用基于Lyapunov稳定性的MARC自适应控制算法对悬臂梁的数学模型进行控制仿真验证。最后运用LABVIEW平台和实验仪器基于MARC自适应控制算法对悬臂梁进行振动控制实验验证。实验和仿真结果都证明MARC自适应控制能够有效控制智能悬臂梁的自由振动。  相似文献   

6.
摘 要:由于智能结构的工作环境变化多端,各种性能参数会随着环境变化而变化,先前建好的模型不再适应设计好的控制律,本文应用压电双晶片的驱动传感一体化的特性,实现了智能悬臂梁的自适应控制研究。基于极点配置理论,采用了自校正PID控制方法在线实时设计了控制参数,解决了模型参数无法实时更新进而导致的控制精度低的问题。通过MATLAB的SIMULINK的数值仿真,得出了自校正PID控制方法在实现智能结构自适应振动控制中是可行的结论,并且通过搭建实验平台进行实验验证;利用压电双晶片的驱动传感特性,使智能悬臂梁的自由振动得到了有效控制。因此,基于自校正PID控制方法,采用压电双晶片对智能结构吸振减振提供了理论与实验的研究基础。  相似文献   

7.
提出一种压电自感知电荷驱动方法,研究用同一压电元件在抑制振动的同时又能感知振动状态。该方法控制电路简单,在智能结构中易于实现,且电路调节方便,振动抑制效果好。将该方法应用于悬臂梁的一阶振动抑制,悬臂梁自由端振幅可被抑制约达90%。实验结果表明,该方法在驱动压电元件致动的同时可感知结构的运动状态,有望应用于诸如扫描探针显微镜、智能结构监测与控制等领域中。  相似文献   

8.
压电悬臂梁广泛应用于振动能量收集器的设计。然而,长期经受振动激励很容易导致其产生疲劳损伤,致使压电体发生失效。旨在研究一种基于电压的压电悬臂梁剩余寿命预测方法,实现压电悬臂梁的寿命预测。首先,设计压电悬臂梁振动试验系统,测试压电悬臂梁的共振频率、发电电压和循环加载次数。然后,基于试验测得的共振频率定义损伤,建立电压变化与损伤的关系。最后,以电压变化率为损伤指针,建立压电悬臂梁的剩余寿命预测模型,利用试验结果证实寿命预测模型的准确性。结果表明,共振频带激励下,该模型可预测压电悬臂梁的剩余寿命,损伤率D在0.4~0.8区间内,预测误差小于15%;当损伤率D在0.8~1.0区间内,误差小于5%;当D小于0.4时,误差较大。  相似文献   

9.
基于耗散坐标与GHM(Golla-Hughes-Mctavish)模型建立智能约束层阻尼悬臂梁结构的动力学模型,并研究智能约束层悬臂梁结构的振动主动控制。针对结构模型自由度过高问题,分别在物理空间和模态空间对结构模型进行联合降阶处理。先通过具体算例验证了该研究建模方法的正确性,然后比较研究了压电片和黏弹性层铺设位置对系统振动控制效果和控制成本的影响。最后验证了结构简化模型的普遍适用性。研究结果显示,在控制器反馈增益相同的条件下,压电片和黏弹性层的位置越靠近固定端,系统控制效果越好,控制成本越小。简化的模型对含有噪声的输入信号也有较好的控制效果。  相似文献   

10.
为增强压电悬臂梁振动控制效果,提出一种基于最小二乘法的逆迟滞补偿控制算法。在不同电压下对压电陶瓷片位移进行实测,应用最小二乘法对其迟滞环进行多项式拟合建模,并利用压电片逆迟滞补偿模型对控制电压进行补偿。通过悬臂梁振动主动控制试验系统研究PID控制器在有、无逆迟滞补偿时的控制效果。结果表明:经过PID逆迟滞补偿后的主动控制效果比传统PID提高10.083%。因此,该逆迟滞补偿方法能够有效增强压电陶瓷片的主动控制效果,对于压电悬臂梁振动主动控制具有重要参考价值。  相似文献   

11.
G.G. Sheng  X. Wang   《Composite Structures》2009,90(4):448-457
An analytical method on active vibration control of smart FG laminated cylindrical shells with thin piezoelectric layers is presented based on Hamilton’s principle. The thin piezoelectric layers embedded on inner and outer surfaces of the smart FG laminated cylindrical shell act as distributed sensor and actuator, which are used to control vibration of the smart FG laminated cylindrical shell under thermal and mechanical loads. Here, the modal analysis technique and Newmark’s integration method are used to calculate the dynamic response of the smart FG laminated cylindrical shell with thin piezoelectric layers. Constant-gain negative velocity feedback approach is used for active vibration control with the structures subjected to impact, step and harmonic excitations. The influences of different piezoelectric materials (PZT-4, BaTiO3 and PZT-5A) and various loading forms on the active vibration control are described in the numerical results.  相似文献   

12.
提出了采用压电元件作为传感器和驱动器 ,基于神经网络技术的柔性结构主动振动控制方法。阐述了神经网络控制的基本原理 ,导出了控制算法 ,并介绍了控制系统构成 ,最后对柔性梁在正弦和伪随机信号激励下的振动进行了主动控制实验 ,实验结果验证了本文所述方法的有效性  相似文献   

13.
提出非线性的分阶最优控制方法,并将其应用于梁的非线性振动压电减振控制。建立梁压电减振系统动力学模型,导出减振系统的非线性动力学运动微分方程,利用摄动法,实现非线性微分方程的线性化。将各阶线性方程解耦,化为状态空间方程。设计非线性分阶控制器,对减振系统进行分阶最优控制。仿真算例验证这种控制方法的有效性。  相似文献   

14.
Advanced reinforced composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the development of smart structures. These structures offer potential benefits in a wide range of engineering applications such as vibration and noise suppression, shape control and precision positioning. This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as sensors and actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one additional electrical potential degree of freedom for each surface bonded piezoelectric element layer or patch. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude and maximize the first natural frequency. Also the optimization of the patches position is performed to maximize the piezoelectric actuators efficiency. The simulated annealing algorithm is used for these purposes. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers or patches, and to calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the optimization of an illustrative adaptive laminated plate case. The influence of the position and number of piezoelectric patches, as well as the control gain, are investigated and the results are presented and discussed.  相似文献   

15.
This paper presents a sequential linear least square algorithm for tracking dynamic shapes of piezoelectric smart structures. The dynamic shape discussed in this paper is defined as a host structural shape varying with time, and the tracking technique is to find an electric voltage history for each piezoelectric device over a time period so that the desired structural movements can be achieved. In the theoretical formulation, dynamic equations of piezoelectric smart structures are introduced by finite element analysis, and then a solution procedure for a set of time‐dependent electric voltages is derived by combining the linear least square method and the Houbolt numerical integration scheme. The formulation indicates that this algorithm can be used to find the time‐dependent voltages for tracking structural movements of piezoelectric smart structures. The present novel formulation is then demonstrated through numerical examples for tracking dynamic shapes of piezoelectric smart beams and plates. The numerical results for the smart beam are compared with the experimental ones. It is shown that the present sequential linear least square algorithm is capable of efficiently simulating dynamic shape tracking for smart structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
压电梁振动的多输入多输出主动控制   总被引:1,自引:1,他引:1  
对表面上贴有多个用作驱动器和传感器的压电陶瓷片的“压电梁”结构,导出了从驱动器到传感器的频响函数公式,作为压电结构设计和振动控制的数学模型。提出了压电梁对缓变周期扰动振动环境的多输入多输出振动抑制方法。  相似文献   

17.
给出了一个压电功能梯度层合梁振动分析的两节点力-电-热耦合梁单元,并将其用于功能梯度层合梁的振动最优控制。在这个多场耦合梁单元中,功能梯度材料的等效力学性能用Voigt或Mori-Tanaka模型表征;梁的位移场用Shi改进的三阶剪切变形板理论描述;压电层的电势场用Layer-wise理论分层表征,且呈高阶非线性电势场的压电层可离散成数个子层。用Hamilton原理推导了压电功能梯度梁的力-电-热耦合单元列式,用拟协调元法给出了多场耦合梁单元的高计算效率的显式单元刚度矩阵,以及采用线性二次型(LQR)最优控制算法进行压电功能梯度层合梁的最优振动控制。使用所得力-电-热耦合梁单元进行了压电功能梯度层合梁的静力和动力分析。数值算例表明,所得力-电-热耦合梁单元可靠、准确和高效,LQR最优控制算法得到最优控制电压可有效抑制功能梯度梁的振动且实现控制系统能量的优化。  相似文献   

18.
针对复杂非线性结构动力学系统提出了一种基于有限元与神经网络相结合的杂交建模方法。依据该方法,首先将系统中的线性结构部分采用有限元建模,非线性或难以机理建模的结构部件采用神经网络描述。其次,再通过力和位移边界联接条件将有限元模型部分和神经网络模型部分结合从而得到整个系统的杂交模型,且杂交模型的物理结构明确,精度较高,网络规模较小。在一非线性隔振系统的杂交建模算例仿真中,用所建杂交模型对正弦及宽带随机激励进行了预测检验分析,结果良好,该杂交建模方法为主体结构为线弹性结构而又包含有强非线性器件的非线性动力学系统提供了一种有效的建模途径。  相似文献   

19.
在空间范数定义的基础上,推导出了结构模态空间范数的计算公式。考虑压电柔性结构振动控制中作动器分布对结构建模与控制性能的影响,利用模态空间范数度量各个模态对结构动力响应的贡献,并对结构进行了模态选择与模型降阶。利用所建立的降阶模型,设计了一个对受外部干扰结构进行振动抑制的动态输出反馈]]>;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号