首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical investigation of non-Newtonian steady blood flow in a complete idealized 3D bypass model with occluded native artery is presented in order to study the non-Newtonian effects for two different sets of physiological parameters (artery diameter and inlet Reynolds number), which correspond to average coronary and femoral native arteries. Considering the blood to be a generalized Newtonian fluid, the shear-dependent viscosity is evaluated using the Carreau–Yasuda model. All numerical simulations are performed by an incompressible Navier–Stokes solver developed by the authors, which is based on the pseudo-compressibility approach and the cell-centred finite volume method defined on unstructured hexahedral computational grid. For the time integration, the fourth-stage Runge–Kutta algorithm is used. The analysis of numerical results obtained for the non-Newtonian and Newtonian flows through the coronary and femoral bypasses is focused on the distribution of velocity and wall shear stress in the entire length of the computational model, which consists of the proximal and distal native artery and the connected end-to-side bypass graft.  相似文献   

2.
This paper deals with numerical solution of two-dimensional and three-dimensional steady and unsteady laminar incompressible flows for Newtonian and non-Newtonian shear thickening fluids flow through a branching channel. The mathematical model used in this work is the generalized system of Navier–Stokes equations. The right hand side of this system is defined by the power-law model. The finite volume method combined with artificial compressibility method is used for numerical simulations of generalized Newtonian fluids flow. Numerical solution is divided into two parts, steady state and unsteady. Steady state solution is achieved for t→∞t using steady boundary conditions and followed by steady residual behaviour. For unsteady solution high artificial compressibility coefficient β2β2 is considered. An artificial compressibility method with a pulsation of the pressure in the outlet boundary is used.  相似文献   

3.
In the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten, this paper presents an extension of a previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier–Stokes equations. Second, it reports numerical simulation results for 1D shock tube problem, 2D impinging jet and 2D/3D broken dam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems.  相似文献   

4.
为比较最小二乘有限元法(Least Square Finite Element Method,LSFEM)和有限体积法在CFD应用中的优劣,采用最小二乘法离散不可压N-S方程的有限元模型,得到正定对称线性系统,采用高效的预处理共轭梯度法求解方程组;利用LSFEM和基于有限体积法的FLUENT分别计算Kovasznay流动、定常二维和三维后台阶流动以及非定常圆柱绕流等4个实例并比较计算结果.结果表明,LSFEM比有限体积法的收敛性和精确性更好,在CFD领域的应用价值很高.  相似文献   

5.
6.
In this paper a novel method for simulating unsteady incompressible viscous flow over a moving boundary is described. The numerical model is based on a 2D Navier–Stokes incompressible flow in artificial compressibility formulation with Arbitrary Lagrangian Eulerian approach for moving grid and dual time stepping approach for time accurate discretization. A higher order unstructured finite volume scheme, based on a Harten Lax and van Leer with Contact (HLLC) type Riemann solver for convective fluxes, developed for steady incompressible flow in artificial compressibility formulation by Mandal and Iyer (AIAA paper 2009-3541), is extended to solve unsteady flows over moving boundary. Viscous fluxes are discretized in a central differencing manner based on Coirier’s diamond path. An algorithm based on interpolation with radial basis functions is used for grid movements. The present numerical scheme is validated for an unsteady channel flow with a moving indentation. The present numerical results are found to agree well with experimental results reported in literature.  相似文献   

7.
This paper presents the development of a 2D high-order solver with spectral difference method for unsteady incompressible Navier-Stokes equations accelerated by a p-multigrid method. This solver is designed for unstructured quadrilateral elements. Time-marching methods cannot be applied directly to incompressible flows because the governing equations are not hyperbolic. An artificial compressibility method (ACM) is employed in order to treat the inviscid fluxes using the traditional characteristics-based schemes. The viscous fluxes are computed using the averaging approach (Sun et al., 2007; Kopriva, 1998) [29] and [12]. A dual time stepping scheme is implemented to deal with physical time marching. A p-multigrid method is implemented (Liang et al., 2009) [16] in conjunction with the dual time stepping method for convergence acceleration. The incompressible SD (ISD) method added with the ACM (SD-ACM) is able to accurately simulate 2D steady and unsteady viscous flows.  相似文献   

8.
The lattice Boltzmann method (LBM) has been widely used for the simulations of the incompressible Navier–Stokes (NS) equations. The finite difference Boltzmann method (FDBM) in which the discrete-velocity Boltzmann equation is solved instead of the lattice Boltzmann equation has also been applied as an alternative method for simulating the incompressible flows. The particle velocities of the FDBM can be selected independently from the lattice configuration. In this paper, taking account of this advantage, we present the discrete velocity Boltzmann equation that has a minimum set of the particle velocities with the lattice Bharnagar–Gross–Krook (BGK) model for the three-dimensional incompressible NS equations. To recover incompressible NS equations, tensors of the particle velocities have to be isotropic up to the fifth rank. Thus, we propose to apply the icosahedral vectors that have 13 degrees of freedom to the particle velocity distributions. Validity of the proposed model (D3Q13BGK) is confirmed by numerical simulations of the shear-wave decay problem and the Taylor–Green vortex problem. With respect to numerical accuracy, computational efficiency and numerical stability, we compare the proposed model with the conventional lattice BGK models (D3Q15, D3Q19 and D3Q27) and the multiple-relaxation-time (MRT) model (D3Q13MRT) that has the same degrees of freedom as our proposal. The comparisons show that the compressibility error of the proposed model is approximately double that of the conventional lattice BGK models, but the computational efficiency of the proposed model is superior to that of the others. The linear stability of the proposed model is also superior to that of the lattice BGK models. However, in non-linear simulations, the proposed model tends to be less stable than the others.  相似文献   

9.
A new lattice Boltzmann approach within the framework of D2Q9 lattice for simulating shear-thinning non-Newtonian blood flows described by the power-law, Carreau-Yasuda and Casson rheology models is proposed in this study. The essence of this method lies in splitting the complete non-Newtonian effect up into two portions: one as the Newtonian result and the other as an effective external source. This arrangement takes the advantage in remaining fixed relaxation time during the whole course of numerical simulation that can avoid the potential numerical instability caused by the relaxation time approaches to 1/2, an inherent difficulty in the conventional lattice Boltzmann methods using varying relaxation times for the non-Newtonian effect. Macroscopically, consistency of the proposed model with the equations of motion for the three target non-Newtonian models is demonstrated through the technique of Chapman-Enskog multi-scale expansion. The feasibility and accuracy of the method are examined by comparing with the analytical solutions of the two-dimensional Poiseuille flows based on the power-law and Casson models. The results show that the velocity profiles agree very well with those of analytical solutions and the error analyses demonstrate that the proposed scheme is with second-order accuracy. The present approach also demonstrates its superiority over the conventional lattice Boltzmann method in the extent of numerical stability for simulating the power-law-based shear-thinning flows. The straightforwardness in scheme derivation and implementation renders the present approach as a potential method for the complex non-Newtonian flows.  相似文献   

10.
A time-derivative preconditioned system of equations suitable for the numerical simulation of inviscid compressible flow at low speeds is formulated. The preconditioned system of equations are hyperbolic in time and remain well-conditioned in the incompressible limit. The preconditioning formulation is easily generalized to multicomponent/multiphase mixtures. When applying conservative methods to multicomponent flows with sharp fluid interfaces, nonphysical solution behavior is observed. This stimulated the authors to develop an alternative solution method based on the nonconservative form of the equations which does not generate the aforementioned nonphysical behavior. Before the results of the application of the nonconservative method to multicomponent flow problems is reported, the accuracy of the method on single component flows will be demonstrated. In this report a series of steady and unsteady inviscid flow problems are simulated using the nonconservative method and a well-known conservative scheme. It is demonstrated that the nonconservative method is both accurate and robust for smooth low speed flows, in comparison to its conservative counterpart.  相似文献   

11.
A fractional step method for the solution of steady and unsteady incompressible Navier–Stokes equations is outlined. The method is based on a finite-volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (third and fifth) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when fifth-order upwind differencing and a modified production term in the Baldwin–Barth one-equation turbulence model are used with adequate grid resolution.  相似文献   

12.
This study deals with the numerical solution of a 2D unsteady flow of a compressible viscous fluid in a channel for low inlet airflow velocity. The unsteadiness of the flow is caused by a prescribed periodic motion of a part of the channel wall with large amplitudes, nearly closing the channel during oscillations. The channel is a simplified model of the glottal space in the human vocal tract and the flow can represent a model of airflow coming from the trachea, through the glottal region with periodically vibrating vocal folds to the human vocal tract.The flow is described by the system of Navier–Stokes equations for laminar flows. The numerical solution is implemented using the finite volume method (FVM) and the predictor–corrector MacCormack scheme with Jameson artificial viscosity using a grid of quadrilateral cells. Due to the motion of the grid, the basic system of conservation laws is considered in the Arbitrary Lagrangian–Eulerian (ALE) form.The authors present the numerical simulations of flow fields in the channel, acquired from a program developed exclusively for this purpose. The numerical results for unsteady flows in the channel are presented for inlet Mach number M = 0.012, Reynolds number Re = 4.5 × 103 and the wall motion frequency 20 and 100 Hz.  相似文献   

13.
In the present paper, numerical analysis of incompressible viscoelastic fluid flow is discussed using mixed finite element Galerkin method. Because Maxwellian viscoelasticity is assumed as the constitutive equation, stress components could not be eliminated from the governing equation system. Because of this, mixed finite element method is utilized to discretize the basic equations. For the solution procedures to solve discretized equation system, Newton-Raphson method for steady flow and perturbation method for unsteady flow is employed. As the numerical examples, comparison was made on the finite element computational results between by direct method and by mixed method. Effects of the viscoelasticity is analyzed for the flows at Reynold's numbers 30, 50 and 70.  相似文献   

14.
The development and validation of a parallel unstructured tetrahedral non-nested multigrid (MG) method for simulation of unsteady 3D incompressible viscous flow is presented. The Navier-Stokes solver is based on the artificial compressibility method (ACM) and a higher-order characteristics-based finite-volume scheme on unstructured MG. Unsteady flow is calculated with an implicit dual time stepping scheme. The parallelization of the solver is achieved by a MG domain decomposition approach (MG-DD), using the Single Program Multiple Data (SPMD) programming paradigm. The Message-Passing Interface (MPI) Library is used for communication of data and loop arrays are decomposed using the OpenMP standard. The parallel codes using single grid and MG are used to simulate steady and unsteady incompressible viscous flows for a 3D lid-driven cavity flow for validation and performance evaluation purposes. The speedups and efficiencies obtained by both the parallel single grid and MG solvers are reasonably good for all test cases, using up to 32 processors on the SGI Origin 3400. The parallel results obtained agree well with those of serial solvers and with numerical solutions obtained by other researchers, as well as experimental measurements.  相似文献   

15.
Numerical manifold method (NMM) application to direct numerical solution for unsteady incompressible viscous flow Navier-Stokes (N-S) equations was discussed in this paper, and numerical manifold schemes for N-S equations were derived based on Galerkin weighted residuals method as well. Mixed covers with linear polynomial function for velocity and constant function for pressure was employed in finite element cover system. The patch test demonstrated that mixed covers manifold elements meet the stability conditions and can be applied to solve N-S equations coupled velocity and pressure variables directly. The numerical schemes with mixed covers have also been proved to be unconditionally stable. As applications, mixed cover 4-node rectangular manifold element has been used to simulate the unsteady incompressible viscous flow in typical driven cavity and flow around a square cylinder in a horizontal channel. High accurate results obtained from much less calculational variables and very large time steps are in very good agreement with the compact finite difference solutions from very fine element meshes and very less time steps in references. Numerical tests illustrate that NMM is an effective and high order accurate numerical method for unsteady incompressible viscous flow N-S equations.  相似文献   

16.
This paper presents the latest developments of a discontinuous Galerkin (DG) method for incompressible flows introduced in [Bassi F, Crivellini A, Di Pietro DA, Rebay S. An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J Comput Phys 2006;218(2):794–815] for the steady Navier–Stokes equations and extended in [Bassi F, Crivellini A. A high-order discontinuous Galerkin method for natural convection problems. In: Wesseling P, Oñate E, Periaux J, editors. Electronic proceedings of the ECCOMAS CFD 2006 conference, Egmond aan Zee, The Netherlands, September 5–8; 2006. TU Delft] to the coupled Navier–Stokes and energy equations governing natural convection flows.

The method is fully implicit and applies to the governing equations in primitive variable form. Its distinguishing feature is the formulation of the inviscid interface flux, which is based on the solution of local Riemann problems associated with the artificial compressibility perturbation of the Euler equations. The tight coupling between pressure and velocity so introduced stabilizes the method and allows using equal-order approximation spaces for both pressure and velocity. Since, independently of the amount of artificial compressibility added, the interface flux reduces to the physical one for vanishing interface jumps, the resulting method is strongly consistent.

In this paper, we present a review of the method together with two recently developed issues: (i) the high-order DG discretization of the incompressible Euler equations; (ii) the high-order implicit time integration of unsteady flows. The accuracy and versatility of the method are demonstrated by a suite of computations of steady and unsteady, inviscid and viscous incompressible flows.  相似文献   


17.
This paper investigates the applicability of the stencil-adaptive finite difference method for the simulation of two-dimensional unsteady incompressible viscous flows with curved boundary. The adaptive stencil refinement algorithm has been proven to be able to continuously adapt the stencil resolution according to the gradient of flow parameter of interest [Ding H, Shu C. A stencil adaptive algorithm for finite difference solution of incompressible viscous flows. J Comput Phys 2006;214:397-420], which facilitates the saving of the computational efforts. On the other hand, the capability of the domain-free discretization technique in dealing with the curved boundary provides a great flexibility for the finite difference scheme on the Cartesian grid. Here, we show that their combination makes it possible to simulate the unsteady incompressible flow with curved boundary on a dynamically changed grid. The methods are validated by simulating steady and unsteady incompressible viscous flows over a stationary circular cylinder.  相似文献   

18.
The proper orthogonal decomposition (POD) is a reduced-order modeling technique that is used to compactly represent unsteady flows. In this paper, we use the POD to capture the parametric variation of a flow with Reynolds number. We study incompressible, axisymmetric, steady flow over spherical particles at various Reynolds numbers in order to give an alternative to correlation-based approaches for predicting the drag on a sphere. In most previous applications of the POD for reduced-order modeling of incompressible flow, the POD modes typically have only described the velocity field; the pressure field was not directly modeled. Since we are interested in drag, which is dependent on the pressure, we formulate the method to directly include the pressure field of an incompressible flow. The POD modes are then derived from numerical flow solutions obtained using an hp-finite element method. A reduced-order model is created by performing a streamwise-upwind-Petrov-Galerkin (SUPG) projection of the incompressible Navier-Stokes equations onto the space spanned by the POD modes. The SUPG approach is taken because when pressure modes are included the Galerkin method fails to give unique solutions for incompressible flow. This is demonstrated for some simple test cases. An efficient numerical implementation is also developed using a Taylor expansion of the SUPG projection of the Navier-Stokes equations. Finally, values of drag are computed from the reduced-order model. Drag can be calculated to within 1.0% of the direct numerical simulations using only a small number of modes while still retaining all of the essential physics around the particle.  相似文献   

19.
This work is concerned with the analysis of time integration procedures for the stabilised finite element formulation of unsteady incompressible fluid flows governed by the Navier–Stokes equations. The stabilisation technique is combined with several different implicit time integration procedures including both finite difference and finite element schemes. Particular attention is given to the generalised-α method and the linear discontinuous in time finite element scheme. The time integration schemes are first applied to two model problems, represented by a first order differential equation in time and the one dimensional advection–diffusion equation, and subjected to a detailed mathematical analysis based on the Fourier series expansion. In order to establish the accuracy and efficiency of the time integration schemes for the Navier–Stokes equations, a detailed computational study is performed of two standard numerical examples: unsteady flow around a cylinder and flow across a backward facing step. It is concluded that the semi-discrete generalised-α method provides a viable alternative to the more sophisticated and expensive space–time methods for simulations of unsteady flows of incompressible fluids governed by the Navier–Stokes equations.  相似文献   

20.
Results of calculations of the steady and unsteady flows past a circular cylinder which is rotating with constant angular velocity and translating with constant linear velocity are presented. The motion is assumed to be two-dimensional and to be governed by the Navier-Stokes equations for incompressible fluids. For the unsteady flow, the cylinder is started impulsively from rest and it is found that for low Reynolds numbers the flow approaches a steady state after a large enough time. Detailed results are given for the development of the flow with time for Reynolds numbers 5 and 20 based on the diameter of the cylinder. For comparison purposes the corresponding steady flow problem has been solved. The calculated values of the steady-state lift, drag and moment coefficients from the two methods are found to be in good agreement. Notable, however, are the discrepancies between these results and other recent numerical solutions to the steady-state Navier-Stokes equations. Some unsteady results are also given for the higher Reynolds numbers of 60, 100 and 200. In these cases the flow does not tend to be a steady state but develops a periodic pattern of vortex shedding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号