首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the numerical solution of Newtonian and non-Newtonian flows with biomedical applications. The flows are supposed to be laminar, viscous, incompressible and steady or unsteady with prescribed pressure variation at the outlet. The model used for non-Newtonian fluids is a variant of power law. Governing equations in this model are incompressible Navier–Stokes equations. For numerical solution we use artificial compressibility method with three stage Runge–Kutta method and finite volume method in cell centered formulation for discretization of space derivatives. The following cases of flows are solved: steady Newtonian and non-Newtonian flow through a bypass connected to main channel in 2D, steady Newtonian flow in angular bypass in 3D and unsteady non-Newtonian flow through bypass in 2D. Some 2D and 3D results that could have application in the area of biomedicine are presented.  相似文献   

2.
The subject of this paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil. A solid elastically supported airfoil with two degrees of freedom, which can rotate around the elastic axis and oscillate in the vertical direction, is considered. The numerical simulation consists of the stabilized finite element treatment of the Reynolds averaged Navier–Stokes (RANS) approach, the use of turbulence models and the solution of the system of ordinary differential equations describing the airfoil motion. The time dependent computational domain and a moving grid are taken into account with the aid of the Arbitrary Lagrangian–Eulerian (ALE) formulation of the Navier–Stokes equations. High Reynolds numbers up to 106 require to use a suitable stabilization of the finite element discretization and the application of a turbulence model. We apply the algebraic turbulence model, which was designed by Baldwin and Lomax and modified by Rostand. The developed technique was tested by the simulation of flow past a flat rigid plate and the computation of pressure distribution around a rotating airfoil with prescribed motion. Finally, the method was applied to the simulation of flow induced airfoil vibrations. This research was supported under the Grant No. IAA200760613 of the Grant Agency of Academy of Sciences of the Czech Republic. The research of M. Feistauer was partly supported by the research project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and the research of L. Dubcová was partly supported by the grant No. 48607 of the Grant Agency of the Charles University. The authors acknowledge the support of these institutions.  相似文献   

3.
In this paper we consider a conservative discretization of the two-dimensional incompressible Navier–Stokes equations. We propose an extension of Arakawa’s classical finite difference scheme for fluid flow in the vorticity–stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and verify the conservation properties, which are essential for long time integration. Furthermore, we discuss the massively parallel implementation on graphic processing units.  相似文献   

4.
The generalized Stokes problem is solved for non-standard boundary conditions. This problem arises after time semi-discretization by ALE method of the Navier–Stokes system, which describes the flow of two immiscible fluids with similar densities but different viscosities in a horizontal pipe, when modeling heavy crude oil transportation. We discretized the generalized Stokes problem in space using the “Mini” finite element. The inf-sup condition is proved when the interface between the two fluids and its discretization match exactly. The linear system obtained after discretization is solved using different iterative Krylov methods with and without preconditioning. Numerical experiments with different meshes are presented as well as comparisons between the methods considered. The results suggest that FGMRES and a preconditioning technique based on symmetric/skew-symmetric decomposition is a promising candidate for solving large scale generalized Stokes problem.  相似文献   

5.
This paper studies a two-dimensional incompressible viscous flow past a rotating cylinder with cross flow oscillation using a finite element method based on the characteristic based split (CBS) algorithm to solve governing equations including full Navier–Stokes and continuity equations. Dynamic unstructured triangular grid is used employing lineal and torsional spring analogy which is coupled with the solver by an Arbitrary Lagrangian–Eulerian (ALE) formulation. After verifying the accuracy of the numerical code, simulations are conducted for the flow past a rotating cylinder with cross flow oscillation at moderate Reynolds numbers of 50, 100, and 200 considering different non-dimensional rotational speeds based on the free-stream velocity in the range 0–2.5, and various oscillating amplitudes and frequencies. Effects of the oscillation and rotation of the cylinder on the vortex shedding both in lock-on and non-lock-on regions, the mean drag and lift coefficients, and the Strouhal number are investigated in detail. It is found that similar to the fixed cylinder beyond a critical non-dimensional rotational speed the vortex shedding is highly suppressed. In addition, by increasing the rotational speed of the cylinder, the lift coefficient increases while decreasing the drag coefficient. However, in the vortex lock-on region both the lift and the drag coefficients increase significantly.  相似文献   

6.
L.K. Lundin 《Parallel Computing》1998,24(14):2021-2034
To compute the time-dependent flow of a rotating incompressible fluid we consider the velocity–vorticity formulation of the Navier–Stokes equations in cylindrical coordinates. In the numerical method employed the velocity field at each time-step is found as the least squares solution of an overdetermined system of linear equations, Ax=b. We consider how to compute x using the preconditioned conjugate gradient algorithm for least squares (PCGLS) on a distributed parallel computer. The various aspects of using a parallel computer are discussed, and results for a wide range of parallel computers are presented. The parallel speed-up depends on the architecture but is typically about 80% of the number of processors used.  相似文献   

7.
In this paper we consider the flux-free finite element method based on the Eulerian framework for immiscible incompressible two-fluid flows, which is defined so as to preserve the mass of each fluid. This method is derived from the variational formulation including the flux-free constraint for the Navier–Stokes equations by the Lagrange multiplier technique. Focusing on the stationary problem, we prove the well-posedness of the finite element solution by a discrete inf-sup condition and show basic error estimates. Moreover we also show the stability of the fractional-step projection finite element scheme for the non-stationary problem. Finally, we give some numerical results to validate our method.  相似文献   

8.
We develop a numerical model for large eddy simulation of turbulent heat transport in the Strait of Gibraltar. The flow equations are the incompressible Navier–Stokes equations including Coriolis forces and density variation through the Boussinesq approximation. The turbulence effects are incorporated in the system by considering the Smagorinsky model. As a numerical solver we propose a finite element semi-Lagrangian method. The solution procedure consists of combining a non-oscillatory semi-Lagrangian scheme for time discretization with the finite element method for space discretization. Numerical results illustrate a buoyancy-driven circulations along the Strait of Gibraltar and the sea-surface temperature is flushed out and move to northeast coast. The Ocean discharge and the temperature difference are shown to control the plume structure.  相似文献   

9.
This work is concerned with the analysis of time integration procedures for the stabilised finite element formulation of unsteady incompressible fluid flows governed by the Navier–Stokes equations. The stabilisation technique is combined with several different implicit time integration procedures including both finite difference and finite element schemes. Particular attention is given to the generalised-α method and the linear discontinuous in time finite element scheme. The time integration schemes are first applied to two model problems, represented by a first order differential equation in time and the one dimensional advection–diffusion equation, and subjected to a detailed mathematical analysis based on the Fourier series expansion. In order to establish the accuracy and efficiency of the time integration schemes for the Navier–Stokes equations, a detailed computational study is performed of two standard numerical examples: unsteady flow around a cylinder and flow across a backward facing step. It is concluded that the semi-discrete generalised-α method provides a viable alternative to the more sophisticated and expensive space–time methods for simulations of unsteady flows of incompressible fluids governed by the Navier–Stokes equations.  相似文献   

10.
In the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten, this paper presents an extension of a previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier–Stokes equations. Second, it reports numerical simulation results for 1D shock tube problem, 2D impinging jet and 2D/3D broken dam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems.  相似文献   

11.
A finite volume method for geometries parameterized by Non-Uniform Rational B-Splines (NURBS) is proposed. Since the computational grid is inherently defined by the knot vectors of the NURBS parameterization, the mesh generation step simplifies here greatly and furthermore curved boundaries are resolved exactly. Based on the incompressible Navier–Stokes equations, the main steps of the discretization are presented, with emphasis on the preservation of geometrical and physical properties. Moreover, the method is combined with a structural solver based on isogeometric finite elements in a partitioned fluid–structure interaction coupling algorithm that features a gap-free and non-overlapping interface even in the case of non-matching grids.  相似文献   

12.
13.
The work deals with numerical solution of the Navier–Stokes equations for incompressible fluid using finite volume and finite difference methods. The first method is based on artificial compressibility where continuity equation is changed by adding pressure time derivative. The second method is based on solving momentum equations and the Poisson equation for pressure instead of continuity equation. The numerical solution using both methods is compared for backward facing step flows. The equations are discretized on orthogonal grids with second, fourth and sixth orders of accuracy as well as third order accurate upwind approximation for convective terms. Not only laminar but also turbulent regimes using two-equation turbulence models are presented.  相似文献   

14.
We analyze here the bidimensional boundary value problems, for both Stokes and Navier–Stokes equations, in the case where non standard boundary conditions are imposed. A well-posed vorticity–velocity–pressure formulation for the Stokes problem is introduced and its finite element discretization, which needs some stabilization, is then studied. We consider next the approximation of the Navier–Stokes equations, based on the previous approximation of the Stokes equations. For both problems, the convergence of the numerical approximation and optimal error estimates are obtained. Some numerical tests are also presented.  相似文献   

15.
The development of a computational model for the simulation of three-dimensional unsteady incompressible viscous fluid flows with moving boundaries is presented. The numerical model is based upon the solution of the Navier–Stokes equations on unstructured meshes using the artificial compressibility approach. An ALE formulation is adopted and the equations are discretized using a cell vertex finite volume method. The formulation ensures the satisfaction of the geometric conservation law when the mesh is allowed to move. An implicit time discretization is adopted and a dual time approach is employed. Explicit relaxation is used for the sub-iterations, with multigrid acceleration. For moving geometries, the mesh is deformed by adopting a spring analogy, combined with a wall distance function approach. The numerical procedure is validated on a standard problem and is then used for the simulation of flow over a flexible fish-like body.  相似文献   

16.
《国际计算机数学杂志》2012,89(18):2576-2602
The major emphasis of this work is the development of a stabilized finite element method for solving incompressible Navier–Stokes equations with stochastic input data. The polynomial chaos expansion is used to represent stochastic processes in the variational problem, resulting in a set of deterministic variational problems to be solved for each Wiener polynomial chaos. To obtain the chaos coefficients in the corresponding deterministic incompressible Navier–Stokes equations, we combine the modified method of characteristics with the finite element discretization. The obtained Stokes problem is solved using a robust conjugate-gradient algorithm. This algorithm avoids projection procedures and any special correction for the pressure. These numerical techniques associate the geometrical flexibility of the finite element method with the ability offered by the modified method of characteristics to solve convection-dominated problems using time steps larger than its Eulerian counterpart. Numerical results are shown for the benchmark problems of driven cavity flow and backward-facing step flow. We also present numerical results for a problem of stochastic natural convection. It is found that the proposed stabilized finite element method offers a robust and accurate approach for solving the stochastic incompressible Navier–Stokes equations, even when high Reynolds and Rayleigh numbers are used in the simulations.  相似文献   

17.
A parallel implementation of the preconditioned GMRES method is described. The method is used to solve the discretized incompressible Navier–Stokes equations. A parallel implementation of the inner product is given, which appears to be scalable on a massively parallel computer. The most difficult part to parallelize is the ILU-preconditioner. We parallelize the preconditioner using ideas proposed by Bastian and Horton (P. Bastian, G. Horton, SIAM. J. Stat. Comput. 12 (1991) 1457–1470). Contrary to some other parallel methods, the required number of iterations is independent of the number of processors used. A model is presented to predict the efficiency of the method. Experiments are done on the Cray T3D, computing the solution of a two-dimensional incompressible flow. Predictions of computing time show good correspondence with measurements.  相似文献   

18.
This work aims at observing the effect of the mortar element method applied to a geometry requiring refinement in the vicinity of singularities induced by the presence of sharp corners. We solve the two-dimensional incompressible Navier–Stokes equations with a spectral element method. Mortar elements allow for local polynomial refinement, since they allow for functional nonconformity. The problem solved is the flow in a channel partially obstructed by an obstacle representing a rectangular blade.  相似文献   

19.
The colocated scheme for the incompressible Navier–Stokes equations is improved on structured non-Cartesian grids. The method relies on a finite volume discretization and on the use of auxiliary points to locally approximate gradients following a two-point discretization. Enhanced accuracy is demonstrated for two-dimensional cases on strongly distorted meshes by computing Poiseuille flow and a flow in a differentially heated cavity. Received: 23 February 1999 / Accepted: 17 June 1999  相似文献   

20.
A numerical investigation of non-Newtonian steady blood flow in a complete idealized 3D bypass model with occluded native artery is presented in order to study the non-Newtonian effects for two different sets of physiological parameters (artery diameter and inlet Reynolds number), which correspond to average coronary and femoral native arteries. Considering the blood to be a generalized Newtonian fluid, the shear-dependent viscosity is evaluated using the Carreau–Yasuda model. All numerical simulations are performed by an incompressible Navier–Stokes solver developed by the authors, which is based on the pseudo-compressibility approach and the cell-centred finite volume method defined on unstructured hexahedral computational grid. For the time integration, the fourth-stage Runge–Kutta algorithm is used. The analysis of numerical results obtained for the non-Newtonian and Newtonian flows through the coronary and femoral bypasses is focused on the distribution of velocity and wall shear stress in the entire length of the computational model, which consists of the proximal and distal native artery and the connected end-to-side bypass graft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号