首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a hybrid radial basis function network-data envelopment analysis (RBFN-DEA) neural network for classification problems. The procedure uses the radial basis function to map low dimensional input data from input space to a high dimensional + feature space where DEA can be used to learn the classification function. Using simulated datasets for a non-linearly separable binary classification problem, we illustrate how the RBFN-DEA neural network can be used to solve it. We also show how asymmetric misclassification costs can be incorporated in the hybrid RBFN-DEA model. Our preliminary experiments comparing the RBFN-DEA with feed forward and probabilistic neural networks show that the RBFN-DEA fares very well.  相似文献   

2.
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the input and output data in real-world problems are often imprecise or ambiguous. Some researchers have proposed interval DEA (IDEA) and fuzzy DEA (FDEA) to deal with imprecise and ambiguous data in DEA. Nevertheless, many real-life problems use linguistic data that cannot be used as interval data and a large number of input variables in fuzzy logic could result in a significant number of rules that are needed to specify a dynamic model. In this paper, we propose an adaptation of the standard DEA under conditions of uncertainty. The proposed approach is based on a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set. Our robust DEA (RDEA) model seeks to maximize efficiency (similar to standard DEA) but under the assumption of a worst case efficiency defied by the uncertainty set and it’s supporting constraint. A Monte-Carlo simulation is used to compute the conformity of the rankings in the RDEA model. The contribution of this paper is fourfold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA; (2) we address the gap in the imprecise DEA literature for problems not suitable or difficult to model with interval or fuzzy representations; (3) we propose a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set; and (4) we use Monte-Carlo simulation to specify a range of Gamma in which the rankings of the DMUs occur with high probability.  相似文献   

3.
One of the primary issues on data envelopment analysis (DEA) models is the reduction of weights flexibility. There are literally several studies to determine common weights in DEA but none of them considers uncertainty in data. This paper introduces a robust optimization approach to find common weights in DEA with uncertain data. The uncertainty is considered in both inputs and outputs and a suitable robust counterpart of DEA model is developed. The proposed robust DEA model is solved and the ideal solution is found for each decision making units (DMUs). Then, the common weights are found for all DMUs by utilizing the goal programming technique. To illustrate the performance of the proposed model, a numerical example is solved. Also, the proposed model of this paper is implemented by using some actual data from provincial gas companies in Iran.  相似文献   

4.
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.  相似文献   

5.
6.
Fuzzy data envelopment analysis and its application to location problems   总被引:1,自引:0,他引:1  
In this paper, fuzzy DEA (data envelopment analysis) models are proposed for evaluating the efficiencies of objects with fuzzy input and output data. The obtained efficiencies are also fuzzy numbers that reflect the inherent ambiguity in evaluation problems under uncertainty. An aggregation model for integrating fuzzy attribute values is provided in order to rank objects objectively. Using the proposed method, a case study involving a restaurant location problem is analyzed in detail. Rent of establishment, traffic amount, level of security, consumer consumption level and competition level are identified as the primary factors in determining an ideal location for a Japanese-style rotisserie restaurant. Based on field investigation, the uncertain information on primary factors is represented by fuzzy numbers. Using the fuzzy aggregation model, the best location of restaurant is determined. The case study shows that fuzzy DEA models can be quite useful for solving business problems under uncertainty.  相似文献   

7.
In this paper, the cross efficiency evaluation method, regarded as a DEA extension tool, is firstly reviewed for its utilization in identifying the Decision Making Unit (DMU) with the best practice and ranking the DMUs by their respective cross-efficiency scores. However, we then point out that the main drawback of the method lies in non-uniqueness of cross-efficiency scores resulted from the presence of alternate optima in traditional DEA models, obviously making it become less effective. Aiming at the research gap, a weight-balanced DEA model is proposed to lessen large differences in weighted data (weighted inputs and weighted outputs) and to effectively reduce the number of zero weights for inputs and outputs. Finally, we use two examples of the literature to illustrate the performance of this approach and discuss some issues of interest regarding the choosing of weights in cross-efficiency evaluations.  相似文献   

8.
In this paper, we propose a model that minimizes deviations of input and output weights from their means for efficient decision-making units in data envelopment analysis. The mean of an input or output weight is defined as the average of the maximum and the minimum attainable values of the weight when the efficient decision making unit under evaluation remains efficient. Alternate optimal weights usually exist in the linear programming solutions of efficient decision-making units and the optimal weights obtained from most of the linear programming software are somewhat arbitrary. Our proposed model can yield more rational weights without a priori information about the weights. Input and output weights can be used to compute cross-efficiencies of decision-making units in peer evaluations or group decision-making units, which have similar production processes via cluster analysis. If decision makers want to avoid using weights with extreme or zero values to access performance of decision-making units, then choosing weights that are close to their means, may be a rational choice.  相似文献   

9.
In this paper, a new method for aggregating the opinions of experts in a preferential voting system is proposed. The method, which uses fuzzy concept in handling crisp data, is computationally efficient and is able to completely rank the alternatives. Through this method, the number of votes for certain rank position that each alternative receives are first grouped together to form fuzzy numbers. The nearest point to a fuzzy number concept is then used to introduce an artificial ideal alternative. Data envelopment analysis is next used to find the efficiency scores of the alternatives in a pair-wise comparison with the artificial ideal alternative. Alternatives are rank based on these efficiency scores. If the alternatives are not completely ranked, a weight restriction method also based on fuzzy concept is used on the un-discriminated alternatives until they are completely ranked. Two examples are given for illustration of the method.  相似文献   

10.
Taguchi method is an efficient method used in off-line quality control in that the experimental design is combined with the quality loss. This method including three stages of systems design, parameter design, and tolerance design has been deeply discussed in Phadke [Quality engineering using robust design (1989)]. It is observable that most industrial applications solved by Taguchi method belong to single-response problems. However, in the real world more than one quality characteristic should be considered for most industrial products, i.e. most problems customers concern about are multi-response problems. As a result, Taguchi method is not appropriate to optimize a multi-response problem. At present, it is still necessary to rely on the engineering judgment to optimize the multi-response problem; therefore uncertainty will be increased during the decision-making process. On the other hand, due to some uncontrollable causes occurring, only a portion of experiment can be completed so that the censored data will be produced. Traditional approaches for analysis of censored data are computationally complicated. In order to overcome above two shortages, this article proposes an effective procedure on the basis of the neural network (NN) and the data envelopment analysis (DEA) to optimize the multi-response problems. A case study of improving the quality of hard disk driver in Su and Tong [ Total Quality Management 8 (1997) 409] is resolved by the proposed procedure. The result indicates that it yields a satisfactory solution.  相似文献   

11.
This article describes a general-purpose microcomputer code for data envelopment analysis (DEA) that incorporates four different DEA models in the form of a user-friendly, menu-driven structure.Research financially supported by Dean's Professorship, College of Business, the Ohio State University.  相似文献   

12.
In data mining applications, it is important to develop evaluation methods for selecting quality and profitable rules. This paper utilizes a non-parametric approach, Data Envelopment Analysis (DEA), to estimate and rank the efficiency of association rules with multiple criteria. The interestingness of association rules is conventionally measured based on support and confidence. For specific applications, domain knowledge can be further designed as measures to evaluate the discovered rules. For example, in market basket analysis, the product value and cross-selling profit associated with the association rule can serve as essential measures to rule interestingness. In this paper, these domain measures are also included in the rule ranking procedure for selecting valuable rules for implementation. An example of market basket analysis is applied to illustrate the DEA based methodology for measuring the efficiency of association rules with multiple criteria.  相似文献   

13.
Data envelopment analysis (DEA) uses extreme observations to identify superior performance, making it vulnerable to outliers. This paper develops a unified model to identify both efficient and inefficient outliers in DEA. Finding both types is important since many post analyses, after measuring efficiency, depend on the entire distribution of efficiency estimates. Thus, outliers that are distinguished by poor performance can significantly alter the results. Besides allowing the identification of outliers, the method described is consistent with a relaxed set of DEA axioms. Several examples demonstrate the need for identifying both efficient and inefficient outliers and the effectiveness of the proposed method. Applications of the model reveal that observations with low efficiency estimates are not necessarily outliers. In addition, a strategy to accelerate the computation is proposed that can apply to influential observation detection.  相似文献   

14.
Making optimal use of available resources has always been of interest to humankind, and different approaches have been used in an attempt to make maximum use of existing resources. Limitations of capital, manpower, energy, etc., have led managers to seek ways for optimally using such resources. In fact, being informed of the performance of the units under the supervision of a manager is the most important task with regard to making sensible decisions for managing them. Data envelopment analysis (DEA) suggests an appropriate method for evaluating the efficiency of homogeneous units with multiple inputs and multiple outputs. DEA models classify decision making units (DMUs) into efficient and inefficient ones. However, in most cases, managers and researchers are interested in ranking the units and selecting the best DMU. Various scientific models have been proposed by researchers for ranking DMUs. Each of these models has some weakness(es), which makes it difficult to select the appropriate ranking model. This paper presents a method for ranking efficient DMUs by the voting analytic hierarchy process (VAHP). The paper reviews some ranking models in DEA and discusses their strengths and weaknesses. Then, we provide the method for ranking efficient DMUs by VAHP. Finally we give an example to illustrate our approach and then the new method is employed to rank efficient units in a real world problem.  相似文献   

15.
《国际计算机数学杂志》2012,89(9):1069-1076
In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very difficult due to complicated multivariate integration and is only possible if the random variables involved in the chance constraint follow some specific distribution such as normal, uniform, exponential and lognormal distribution. In the proposed method, the stochastic model is directly used. The feasibility of the chance constraints are checked using stochastic simulation, and the genetic algorithm is used to obtain the optimal solution. A numerical example is presented to prove the efficiency of the proposed method.  相似文献   

16.
This research introduces a new type of data envelopment analysis (DEA) model termed the optimal system design (OSD) DEA model. Conventional DEA models evaluate DMUs’ performances given their known input and output data. The OSD DEA models take this one step further. They optimally design a DMU’s resource allocation in terms of profit maximization given the DMU’s total available budget. The need to design optimal systems is quite common and is sometimes necessary in practice. In actual fact, this study demonstrates that through the OSD DEA models, we can provide DMUs with more information than optimal portfolios of resources such as optimal budgets and budget congestion, i.e., the more the budget is consumed, the less the maximal profit. The proposed OSD DEA models are linear programs, and thus can be solved by the standard LP solvers to obtain DMUs’ optimal designs. However, to derive the DMUs’ corresponding optimal budgets, and to verify if the DMUs provide evidence of budget congestion, we need to modify the solvers, which may not be trivial. Therefore, this study exploits the special structures of the models to develop a simple solution method that can directly not only derive both a DMU’s optimal design and optimal budget, but can also check for the existence of budget congestion.  相似文献   

17.
This paper proposes a data envelopment analysis (DEA) approach to measurement and benchmarking of service quality. Dealing with measurement of overall service quality of multiple units with SERVPERF as multiple-criteria decision-making (MCDM), the proposed approach utilizes DEA, in particular, the pure output model without inputs. The five dimensions of SERVPERF are considered as outputs of the DEA model. A case study of auto repair services is provided for the purpose of illustration. The current practice of benchmarking of service quality with SERVQUAL/SERVPERF is limited in that there is little guidance to whom to benchmark and to what degree service quality should be improved. This study contributes to the field of service quality benchmarking by overcoming the above limitations, taking advantage of DEA’s capability to handle MCDM problems and provide benchmarking guidelines.  相似文献   

18.
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on α-cut. One drawback of the α-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the α-cut approach. We introduce the concept of “local α-level” to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.  相似文献   

19.
Fuzzy random programming with equilibrium chance constraints   总被引:7,自引:0,他引:7  
To model fuzzy random decision systems, this paper first defines three kinds of equilibrium chances via fuzzy integrals in the sense of Sugeno. Then a new class of fuzzy random programming problems is presented based on equilibrium chances. Also, some convex theorems about fuzzy random linear programming problems are proved, the results provide us methods to convert primal fuzzy random programming problems to their equivalent stochastic convex programming ones so that both the primal problems and their equivalent problems have the same optimal solutions and the techniques developed for stochastic convex programming can apply. After that, a solution approach, which integrates simulations, neural network and genetic algorithm, is suggested to solve general fuzzy random programming problems. At the end of this paper, three numerical examples are provided. Since the equivalent stochastic programming problems of the three examples are very complex and nonconvex, the techniques of stochastic programming cannot apply. In this paper, we solve them by the proposed hybrid intelligent algorithm. The results show that the algorithm is feasible and effectiveness.  相似文献   

20.
A mixed integer linear model for selecting the best decision making unit (DMU) in data envelopment analysis (DEA) has recently been proposed by Foroughi [Foroughi, A. A. (2011a). A new mixed integer linear model for selecting the best decision making units in data envelopment analysis. Computers and Industrial Engineering, 60(4), 550–554], which involves many unnecessary constraints and requires specifying an assurance region (AR) for input weights and output weights, respectively. Its selection of the best DMU is easy to be affected by outliers and may sometimes be incorrect. To avoid these drawbacks, this paper proposes three alternative mixed integer linear programming (MILP) models for identifying the most efficient DMU under different returns to scales, which contain only essential constraints and decision variables and are much simpler and more succinct than Foroughi’s. The proposed alternative MILP models can make full use of input and output information without the need of specifying any assurance regions for input and output weights to avoid zero weights, can make correct selections without being affected by outliers, and are of significant importance to the decision makers whose concerns are not DMU ranking, but the correct selection of the most efficient DMU. The potential applications of the proposed alternative MILP models and their effectiveness are illustrated with four numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号