首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PM2.5 (particle with an aerodynamic diameter less than 2.5 µm) was measured in different microenvironments of Hong Kong (including one urban tunnel, one Hong Kong/Mainland boundary roadside site, two urban roadside sites, and one urban ambient site) in 2003. The concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 40 elements (Na to U) were determined. The average PM2.5 mass concentrations were 229 ± 90, 129 ± 95, 69 ± 12, 49 ± 18 µg m− 3 in the urban tunnel, cross boundary roadside, urban roadside, and urban ambient environments, respectively. Carbonaceous particles (sum of organic material [OM] and EC) were the dominant constituents, on average, accounting for ∼ 82% of PM2.5 emissions in the tunnel, ∼ 70% at the three roadside sites, and ∼ 48% at the ambient site, respectively. The OC/EC ratios were 0.6 ± 0.2 and 0.8 ± 0.1 at the tunnel and roadside sites, respectively, suggesting carbonaceous aerosols were mainly from vehicle exhausts. Higher OC/EC ratio (1.9 ± 0.7) occurred at the ambient site, indicating contributions from secondary organic aerosols. The PM2.5 emission factor for on-road diesel-fueled vehicles in the urban area of Hong Kong was 257 ± 31 mg veh− 1 km− 1, with a composition of ∼ 51% EC, ∼ 26% OC, and ∼ 9% SO4=. The other inorganic ions and elements made up ∼ 11% of the total PM2.5 emissions. OC composed the largest fraction (∼ 51%) in gasoline and liquid petroleum gas (LPG) emissions, followed by EC (∼ 19%). Diesel engines showed higher emission rates than did gasoline and LPG engines for most pollutants, except for V, Br, Sb, and Ba.  相似文献   

2.
Atmospheric particulate matter (PM) fractions (PM(10) and PM(2.5)) were sampled concurrently between June 2004 and May 2005 at two sites (urban and suburban) in Izmir, Turkey. The elemental composition of PM (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) was determined using inductively coupled plasma-optical emission spectrometer. Elemental compositions of several PM sources were also characterized. Positive matrix factorization (PMF) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions to air concentrations. The major contributors to PM were fossil fuel burning, traffic emissions, mineral industries and marine salt according to the PMF results. However, undetermined parts were more than 40%. On the other hand, the contributions to PM could be determined completely by CMB, and the dominant contributor was traffic with >70% at the two sites. Fossil fuel burning, mineral industries, marine salt and natural gas-fired power plant were the minor contributors.  相似文献   

3.
The aim of this study was to identify the relationship between the concentrations of PM2.5 (particulate matter less than 2.5 μm) and the temporal variation of the monitored gases at Sohar highway, Oman, from November 2014 to February 2015. The hourly concentrations of surface ozone (O3), nitric dioxide (NO2) and sulphur dioxide (SO2) were measured by an open-path differential optical absorption spectroscopy instrument installed across Sohar highway. Additionally, the same gases and the meteorological parameters were measured in the same location of the PM2.5 analyser. The findings of this study show that on the hourly time scale, PM2.5 and O3 were very weakly and negatively correlated. In contrast, on the daily time scale, PM2.5 and O3 were positively rather weakly correlated. Stronger correlation coefficient was found between 24 h averages of PM2.5 and daily maximum O3 concentrations. A policy implication of these findings could be that reducing the emissions of O3 precursors reduces the levels of PM2.5 as well.  相似文献   

4.
There are several models that can be used to evaluate roadside air quality. The comparison of the operational performance of different models pertinent to local conditions is desirable so that the model that performs best can be identified. Three air quality models, namely the 'modified General Finite Line Source Model' (M-GFLSM) of particulates, the 'California Line Source' (CALINE3) model, and the 'California Line Source for Queuing & Hot Spot Calculations' (CAL3QHC) model have been identified for evaluating the air quality at one of the busiest traffic intersections in the city of Guwahati. These models have been evaluated statistically with the vehicle-derived airborne particulate mass emissions in two sizes, i.e. PM10 and PM2.5, the prevailing meteorology and the temporal distribution of the measured daily average PM10 and PM2.5 concentrations in wintertime. The study has shown that the CAL3QHC model would make better predictions compared to other models for varied meteorology and traffic conditions. The detailed study reveals that the agreements between the measured and the modeled PM10 and PM2.5 concentrations have been reasonably good for CALINE3 and CAL3QHC models. Further detailed analysis shows that the CAL3QHC model performed well compared to the CALINE3. The monthly performance measures have also led to the similar results. These two models have also outperformed for a class of wind speed velocities except for low winds (<1 m s(-1)), for which, the M-GFLSM model has shown the tendency of better performance for PM10. Nevertheless, the CAL3QHC model has outperformed for both the particulate sizes and for all the wind classes, which therefore can be optional for air quality assessment at urban traffic intersections.  相似文献   

5.
A longitudinal study on spatial and temporal behavior of particles less than 2.5 μm (PM2.5), solvent extracted organic matter (SEOM), polycyclic aromatic hydrocarbons (PAH), n-alkanes and nitro-PAH was carried out for a full year in 2006, at five sites simultaneously around the Metropolitan Zone of Mexico Valley (MZMV). There is rather uniform distribution of PM2.5 and SEOM in the MZMV regarding gravimetric mass concentration, while some specific organic chemical components showed mass heterogeneity. The highest mass concentrations of target compounds occurred in the dry seasons with respect to the rainy season. Bonfires and fireworks are probably responsible for extreme values of PM2.5, SEOM and PAH (≥ 228 g mol− 1). Benzo[ghi]perylene was the most abundant PAH, with C24-C26 the most abundant n-alkanes and 2-nitrofluoranthene and 9-nitroanthracene the most abundant nitro-PAH. The northeast zone was the area with the greatest presence of sources of incomplete diesel combustion, while the central for gasoline combustion. In the southwest, the biogenic sources were more abundant over the anthropogenic sources. This was opposite to the other sites. Factor analysis allowed us to relate different compounds to emitting sources. Three main factors were associated with combustion, pyrolysis and biogenic primary sources while the other factors were associated with secondary organic aerosol formation and industry. Correlation analyses indicated that SEOM originates from different primary emission sources or is formed by different processes than the other variables, except in southwest. Associations among variables suggest that PM2.5 in the northwest and in the southeast originated mainly from primary emissions or consisted of primary organic compounds. PM2.5 in the northeast, central and southwest contains a greater proportion of secondary organic compounds, with the less oxidized organic aerosols in the northeast and the most aged organic aerosol in the southwest. This follows the trends in the prevailing wind directions in MZMV during 2006.  相似文献   

6.
The inorganic main elements, trace elements and PAHs were determined from selected PM1, PM2.5 and PM10 samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 µm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM10 were actually in PM2.5. For PAHs and trace elements, it is more beneficial to analyse the PM2.5 or even the PM1 fraction instead of PM10, because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 µm, as well as those of submicron particles, increased, and also the ratio PM1/PM10 increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 µm. PAH concentrations rose even to the same level as in winter.  相似文献   

7.
Three monthly 24-hour samples of airborne aerosols (PM10 and PM2.5) were collected at an urban and a rural site of the North central, semi-arid part of India during May 2006 to March 2008. Seven trace metals (Pb, Zn, Ni, Fe, Mn, Cr and Cu) were determined for both sizes. The annual mean concentration for PM10 was 154.2 µg/m3 and 148.4 µg/m3 at urban and rural sites whereas PM2.5 mean concentration was 104.9 µg/m3 and 91.1 µg/m3 at urban and rural sites, respectively. Concentrations of PM10 and PM2.5 have been compared with prescribed WHO standards and NAAQS given by CPCB India and were found to be higher. Weekday/weekend variations of PM10 and PM2.5 have been studied at both monitoring sites. Lower particulate pollutant levels were found during weekends, which suggested that anthropogenic activities are major contributor of higher ambient particulate concentration during weekdays. Significant seasonal variations of particulate pollutants were obtained using the daily average concentration of PM10 and PM2.5 during the study period. PM2.5/PM10 ratios at urban and rural sites were also determined during the study period, which also showed variation between the seasons. Three factors have been identified using Principal Component Analysis at the sampling sites comprising resuspension of road dust due to vehicular activities, solid waste incineration, and industrial emission at urban site whereas resuspension of soil dust due to vehicular emission, construction activities and wind blown dust carrying industrial emission, were common sources at rural site.  相似文献   

8.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

9.
Results on interpretation of the variability of regional background PM levels in the Western Mediterranean basin (WMB) are presented. Mean PM levels recorded at Montseny, MSY (North-Eastern Spain) in the 2002-2007 period reached 17, 13 and 11 µg/m3 of PM10, PM2.5 and PM1, respectively.The daily evolution of PM levels is regulated by the breeze circulation (mountain and sea breezes). PM levels are lower at the rural sites at night owing to the nocturnal drainage flows and to the lowering of the mixing layer height below the MSY high. These nocturnal low levels allowed us to estimate the continental background PM levels. At midday, the atmospheric pollutants accumulated in the pre-coastal depression are transported upwards by the breeze, increasing PM levels.Maximum PM10 levels were recorded in summer, and February-March and November, and minimum values in the rest of the year coinciding with the highest frequency of Atlantic advection. PM peak episodes attributed to Saharan dust outbreaks were recorded in summer and February-March. In addition, anticyclonic situations (February-March and November) may impact in elevated rural areas by increasing hourly levels of PM1 up to 75 µg/m3. This scenario induces the stagnation of pollutants in the pre-coastal depression. Solar radiation activates mountain winds, transporting polluted air masses from the valleys to elevated areas resulting in an increase of fine PM levels in areas outside the boundary layer.A significant decrease in PM annual means (40% and 34% for the entire monitoring period, 7 µgPM10/m3 and 5 µgPM2.5/m3) was recorded at MSY between 2002 and 2007. There appears to be no single cause behind these trends. This could partially be ascribed to the varying frequency and intensity of Saharan dust episodes, but also to large-scale meteorological processes or cycles, and/or to local or meso-scale processes such as nearby anthropogenic emission sources.  相似文献   

10.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

11.
A 1-year field sampling of PM(10) was performed at a town that usually has the worst air quality in Taiwan to examine if PM(10) is a good indicator for pollutant-induced cytotoxicity. The average PM(10) concentration in summer was the lowest, while the other three seasons did not show statistical difference in their PM(10) means. The pollutant-induced cytotoxicity presented as the cumene-hydroperoxide equivalent concentration (CEC) was found to positively correlate with PM(10) concentrations and this study yielded a yearly average of the seasonal CEC 12.+/-8.54 microM with the magnitudes in sequence for the four seasons as: fall>winter>spring>summer. Positive relationship was also found between seasonal PM(10) and their corresponding CECs. The exponential regression model obtained from this study shows: CEC=3.305 exp(0.0118 PM(10)) (R(2)=0.634). The CEC correlates more significantly with NO(3)(-), SO(4)(2-), NH(4)(+) and Cl(-) (secondary aerosol species) than with the Na(+), K(+), Ca(2+) and Mg(2+) (crust-related species) in PM(10). However, the best multivariable model obtained from this study to relate CEC with the concentrations of PM(10)-bearing water-soluble species shows: CEC=exp(1.4751+0.0470[SO(4)(2-)]+0.0143[NO(3)(-)]) (R(2)=0.550).  相似文献   

12.
Over the past decade, member states of the Regional Co-operation Agreement (RCA), an intergovernmental agreement for the East Asia and Pacific region under the auspices of the IAEA with the assistance of international organizations and financial institutions such as the World Bank and the Asian Development Bank, have started to set in place policies and legislation for air pollution abatement. To support planning and evaluate the effectiveness of control programs, data are needed that characterizes urban air quality. The focus of this measurement program describe in this report is on size segregated particulate air pollution. Such airborne particulate matter can have a significant impact on human health and urban visibility. These data provide the input to receptor models that may permit the mitigation of these impacts by identification and quantitative apportionment of the particle sources. The aim of this report is to provide an overview of the measurements of concentrations and composition of particulate air pollution in two size fractions across the participating countries. For many of the large cities in this region, the measured particulate matter concentrations are greater than air quality standards or guidelines that have been adopted in developed countries.  相似文献   

13.
Animal studies have shown exposure to diesel exhaust particles (DEPs) to induce production of reactive oxygen species (ROSs) and increase levels of 8-hydroxydeoxyquanosine (8-OHdG). Controversial results have been obtained regarding the effects of workplace exposure on urinary 8-OHdG level. This study assessed concentrations of environmental PM2.5 in DEP (DEP2.5), personal DEP2.5 and urinary 8-OHdG of diesel engine exhaust emission inspector (inspector) at a diesel vehicle emission inspection station (inspection station). The analysis specifically focuses on the factors that influence inspector urinary 8-OHdG. Repeated-measures study design was used to sample for five consecutive days. A total of 25 environmental PM2.5 measurements were analyzed at 5 different locations by using a dichotomous sampler, and a total of 55 personal PM2.5 measurements were analyzed from inspectors by using PM2.5 personal sampler. During the sampling period, a total of 110 pre- and post-work urine samples from inspectors, and 32 samples from the control group were collected. Following age and sex matching between the inspectors and the control group, levels of urinary 8-OHdG were analyzed.Environmental and personal concentrations of DEP2.5 were 107.25 ± 39.76 (mean ± SD) and 155.96 ± 75.70 μg/m3, respectively. Also, the concentration of urinary 8-OHdG differed significantly between inspector and control non-smokers, averaging 14.05 ± 12.71 and 6.58 ± 4.39 μg/g creatinine, respectively. Additionally, urinary 8-OHdG concentrations were associated with diesel exposure after controlling for smoking and cooking at home. Compared with the control group, the inspector displayed significantly increased levels of urinary 8-OHdG. Diesel exhaust is the single pollutant involved in the exposure of DEP2.5 at the inspection station, as confirmed by the final results.  相似文献   

14.
An in vitro plasmid assay was employed to study the bioreactivity of PM (particulate matter) in Beijing air. It was found that the TD20 (toxic dose of PM causing 20% of plasmid DNA damage) of Beijing PM can be as low as 28 microg ml(-1) and as high as >1000 microg ml(-1). Comparison of the physical properties, such as morphology and size distribution, and oxidative potential indicates that the PM(2.5) (particulate matter with an aerodynamic diameter of 2.5 microm or less) has a stronger oxidative capacity than PM(10) (particulate matter with an aerodynamic diameter of 10 microm or less), and that the higher number percentages of soot aggregates and lower number percentages of mineral and fly ashes are associated with the higher oxidative capacity. Although the mass of PM(10) during dust storms is commonly 5 times higher than that during non-dust storm episodes, the oxidative capacity of PM(10)s of dust storms is much lower than that of the non-dust storm PM(10)s. The water-soluble fractions and intact whole particle solutions of Beijing airborne particles produce similar plasmid assay results, demonstrating that the bioreactivity of Beijing airborne particles is mainly sourced from the water-soluble fraction. In the samples with stronger bioreactivity, the total analyzed water soluble Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and Pb (ppm) concentrations are higher. The water soluble zinc shows a good negative correlation with TD20s, suggesting that the water-soluble zinc is probably the major element responsible for the plasmid DNA damage.  相似文献   

15.
Particulate matter and gaseous pollutants in residences in Antwerp, Belgium   总被引:1,自引:0,他引:1  
This comprehensive study, a first in Flanders, Belgium, aimed at characterizing the residential indoor air quality of subgroups that took part in the European Community Respiratory Health Survey (ECRHS I—1991 and ECHRS II—1996) questionnaire-based asthma and related illnesses studies. This pilot study aimed at the evaluation of particulate matter and various inorganic gaseous compounds in residences in Antwerp. In addition personal exposure to the gaseous compounds of one individual per residence was assessed. The main objective was to obtain some base-line pollutant levels and compare these with studies performed in other cities, to estimate the indoor air quality in residences in Antwerp. Correlations between the various pollutant levels, indoor:outdoor ratios and the micro-environments of each residence were investigated. This paper presents results on indoor and ambient PM1, PM2.5 and PM10 mass concentrations, its elemental composition in terms of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Al, Si, S and Cl and the water-soluble ionic concentrations in terms of SO42−, NO32−, Cl, NH4+ K+, Ca2+. In addition, indoor, ambient and personal exposure levels of the gases NO2, SO2, and O3 were determined. Elevated indoor:outdoor ratios were found for NO2 in residences containing gas stoves. In smoker's houses increased PM concentrations of 58 and 43% were found for the fine and coarse fractions respectively. Contrary to the fact that all I/O ratios of the registered elements in each individual house were significantly correlated to each other, no correlation could be established between the I/O ratios of the different houses, thus indicating a unique micro-environment for each residence. Linear relationships between the particulate matter elemental composition, SO2 and O3 levels indoors and outdoors could be established. No linear relationships between indoor and outdoor NO2 and particulate mass concentrations were found.  相似文献   

16.

Background

Saharan dust outbreaks are a common phenomenon in the Madrid atmosphere. The current Directive 2008/50 CE governing air quality in European cities, draws no distinction between which particulate matter (PM10, PM2.5 or PM10-2.5) would be the best indicator on days with/without Saharan dust intrusions. This study sought to identify the role played by Saharan dust in the relationship between particulate matter (PM10, PM2.5 and PM10-2.5) concentrations and daily mortality among the elderly in the city of Madrid.

Methods

We conducted an ecological longitudinal time-series study on daily mortality among the over-75 age group, from 2003 to 2005. Poisson regression models were constructed for days with and without Saharan dust intrusions. The following causes of daily mortality were analysed: total organic causes except accidents (International Classification of Diseases-10th revision (ICD-10): A00-R99); circulatory causes (ICD-10: I00-I99); and respiratory causes (ICD-10: J00-J99). Daily mean PM10, PM2.5 and PM10-2.5 levels were used as independent variables. Control variables were: other ambient pollutants (chemical, biotic and acoustic); trend; seasonalities; influenza epidemics; and autocorrelations between mortality series.

Results

While daily mean PM2.5 concentrations in Madrid displayed a significant statistical association with daily mortality for all the above causes on days without Saharan dust intrusions, this association was not in evidence for PM10 or PM10-2.5 in the multivariate models. The relative risks (RRs) obtained for an increase of 10 μg/m3 in PM2.5 concentrations were: 1.023 (1.010-1.036) for total organic causes; 1.033 (1.031-1.035) for circulatory causes; and 1.032 (1.004-1.059) for respiratory causes. On Saharan dust days, a significant statistical association was detected between PM10 (though not PM2.5 or PM10-2.5) and mortality for all 3 causes analysed, with RRs statistically similar to those reported for PM2.5.

Conclusions

The best air quality indicators for evaluating the short-term health effects of particulate matter in Madrid are therefore PM10 concentrations on days with, and PM2.5 concentrations on days without Saharan dust outbreaks. This fact should be taken into account in a European Directive regulating ambient air quality in almost all countries in the Mediterranean area.  相似文献   

17.
An air quality study was performed outside a cluster of schools in the East Harlem neighborhood of New York City. PM2.5 and black carbon concentrations were monitored using real-time equipment with a one-minute averaging interval. Monitoring was performed at 1:45-3:30 PM during school days over the period October 31-November 17, 2006. The designated time period was chosen to capture vehicle emissions during end-of-day dismissals from the schools. During the monitoring period, minute-by-minute volume counts of idling and passing school buses, diesel trucks, and automobiles were obtained. These data were transcribed into time series of number of diesel vehicles idling, number of gasoline automobiles idling, number of diesel vehicles passing, and number of automobiles passing along the block adjacent to the school cluster. Multivariate regression models of the log-transform of PM2.5 and black carbon (BC) concentrations in the East Harlem street canyon were developed using the observation data and data from the New York State Department of Environmental Conservation on meteorology and background PM2.5. Analysis of variance was used to test the contribution of each covariate to variability in the log-transformed concentrations as a means to judge the relative contribution of each covariate. The models demonstrated that variability in background PM2.5 contributes 80.9% of the variability in log[PM2.5] and 81.5% of the variability in log[BC]. Local traffic sources were demonstrated to contribute 5.8% of the variability in log[BC] and only 0.43% of the variability in log[PM2.5]. Diesel idling and passing were both significant contributors to variability in log[BC], while diesel passing was a significant contributor to log[PM2.5]. Automobile idling and passing did not contribute significant levels of variability to either concentration. The remainder of variability in each model was explained by temperature, along-canyon wind, and cross-canyon wind, which were all significant in the models.  相似文献   

18.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

19.
Fine particulate air pollution and daily mortality in Shenyang, China   总被引:2,自引:0,他引:2  
Fine particulate matter (PM2.5) is not a criteria pollutant in China, and few studies were conducted in the country to investigate the health impact of PM2.5. In this study, we did a time-stratified case-crossover analysis to examine the association between PM2.5 and daily mortality in Shenyang, an industrial center in northeast China. Daily mortality, air pollution and weather data from August 1, 2006 to December 31, 2008 in Shenyang were collected. A time-stratified case-crossover approach was used to estimate the association of PM2.5 with both total and cause-specific mortality. Controls were selected as matched days of the week in the same month. Potential effect modifiers, such as age, gender, and season, were also examined. We found significant associations between PM2.5 and daily mortality in Shenyang. A 10 μg/m3 increment in the 2-day moving average (lag 01) concentrations of PM2.5 corresponded to 0.49% (95% CI: 0.19%, 0.79%), 0.53% (95% CI: 0.09%, 0.97%), and 0.97% (95% CI: 0.01%, 1.94%) increase of total, cardiovascular, and respiratory mortality, respectively. The associations appeared to be stronger in older people (aged ≥ 75 years), in females and during the warm season. To our knowledge, this is the longest PM2.5 health study in time duration in China. Our findings provide new information on the adverse health effects of PM2.5, and may have implications for environmental policy making and standard setting in China.  相似文献   

20.
This study examines the chemical composition of aerosols over the Greater Istanbul Area. To achieve this 325 (PM10) aerosol samples were collected over Bosphorus from November 2007 to June 2009 and were analysed for the main ions, trace metals, water-soluble organic carbon (WSOC), organic (OC) and elemental carbon (EC).PM10 levels were found to be in good agreement with those measured by the Istanbul Municipality air quality network, indicating that the sampling site is representative of the Greater Istanbul Area. The main ions measured in the PM10 samples were Na+, Ca2+ and non-sea-salt sulphates (nss-SO42−). On average, 31% of Ca2+ was found to be associated with carbonates. Trace elements related to human activities (as Pb, V, Cd and Ni) obtained peak values during winter due to domestic heating, whereas natural origin elements like Al, Fe and Mn peaked during the spring period due to dust transport from Northern Africa. Organic carbon was found to be mostly primary and elemental carbon was strongly linked to fuel oil combustion and traffic. Both OC and EC concentrations increased during winter due to domestic heating, while the higher WSOC to OC ratio during summer can be mostly attributed to the presence of secondary, oxidised and more soluble organics. Factor analysis identified six components/sources for aerosol species in PM10, namely traffic/industrial, crustal, sea-salt, fuel-oil combustion, secondary and ammonium sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号