共查询到19条相似文献,搜索用时 62 毫秒
1.
为了找出齿轮箱故障的定量规律,通过对齿轮箱的振动信号的测试及分析,发现GREENFUNCTION对齿轮箱故障的诊断行之有效,并且成功地找出了G10、G10′等齿轮箱故障的定量诊断参数. 相似文献
2.
针对风电齿轮箱故障预警中数据信息挖掘不充分问题,提出一种基于图注意力和时间卷积网络的风电齿轮箱故障预警
方法。 分别从时间与空间尺度建立各特征点的物理联系,拓宽特征维度以提升故障预警精度。 图注意力网络构建不同数据测
点间的空间拓扑结构,遍历每个节点的相邻节点进行加权求和达到聚合信息的目的;时间卷积网络使用特殊的因果膨胀卷积和
残差网络,扩大感受野,提升时间特征捕捉能力。 以华北某风电场实际数据为例进行验证,结果表明,提出方法能够在故障发生
前 122 h 监测到风电齿轮箱的异常状态并发出预警信号;与其他方法进行对比,提出方法预警时间提前 52~ 63 h,模型预测误差
减小 1. 05% ~ 3. 76%;使用 t-SNE 和概率密度曲线提升结果可解释性。 相似文献
3.
以往基于深度学习的输电线路故障诊断,依赖数字信号处理技术提取故障特征。为了改进前述方法,引入了图深度学习理论,提出了一种基于图注意力网络(GAT)的智能故障诊断方法。将原始三相电流电压信号转化为图数据,利用多个图注意力层自动提取特征信息,从而建立了数据从输入端到输出端之间的映射关系,实现输电线路端到端的故障诊断。在400 kV三相输电线路和IEEE13总线电网系统上验证该方法的准确性和有效性,分别对五种短路故障和无故障情况设置不同初始相角、过渡电阻和故障位置进行仿真分析。结果表明,该方法故障诊断准确率达到9975%以上,与现有几种智能故障诊断算法对比其性能最优。同时,该方法在不同白噪声下依然保持较高的故障识别率,具有良好的鲁棒性和泛化能力,为电力输电线路诊断技术提供了一定的研究思路。 相似文献
4.
海上风电机组齿轮箱运行状态的有效监测和及时预警对海上风机运维工作具有重要意义。为此,提出一种基于门控循环单元(Gated Recurrent Unit, GRU)和注意力机制的海上风电机组齿轮箱状态监测方法。在训练阶段,通过注意力机制自动提取海上风电SCADA数据集输入参量与目标建模参量间的关联关系,同时采用GRU网络提取数据间的时序依赖关系,进而建立风电机组齿轮箱的正常行为模型。在测试阶段,采用指数加权移动平均值(Exponentially Weighted Moving-Average,EWMA)控制图对目标建模参量实际值和模型预测值间的输出残差进行监控,实现海上风机齿轮箱运行状态的实时监测和预警。最后基于东海大桥海上风电场真实数据对所提方法的有效性和优越性进行了验证。结果表明:所提方法对故障和正常运行条件下的海上风电机组齿轮箱状态均可进行有效监测,且相比现有陆上风机状态监测方法具有更高的精度和可解释性,并能更早地揭示故障趋势。 相似文献
5.
针对小样本条件下原型网络在提取特征过程中会丢失振动数据的时序特征,且未修正样本在度量空间中的分布导致模型精度低的问题,提出一种时序注意力边界增强原型网络的齿轮箱故障诊断方法。 首先,通过构建时间序列注意力模块,建立通道间的时序特征依赖,获得通道时序融合特征;然后,在计算类原型之后,增加邻边界损失以修正度量空间中的故障特征类内和类间分布,明确类原型的表征边界。 最后,通过计算测试样本与类原型的欧氏距离,输出故障诊断结果。 实验表明,在小样本条件下本文所提方法相比其他方法具有更高的故障诊断精度。 相似文献
6.
针对传统特征提取方法依赖人工经验以及传统神经网络未充分利用时间序列信息的问题,首先通过时间卷积网络的空洞因果卷积、随机丢弃层和残差结构跨时间步提取不同振动信号的特征;然后引入注意力机制获取关键信息,实现特征优化选择;再利用双向门控循环单元捕捉长期依赖关系;最后通过归一化指数函数进行故障分类。实验结果表明,在不同训练样本比例下,该方法的识别精度高于一维卷积神经网络、双向长短期记忆网络、双向循环神经网络;用该方法能够有效识别轴承故障类型,且模型的泛化能力较强。 相似文献
7.
基于离散粒子群优化算法(DPSO)与基于多尺度小波核函数的核极限学习机(MKELM),提出了一种新型的DPSOMKELM算法用于风机齿轮箱故障诊断。首先,针对PSO算法过早收敛,易陷入局部最优的缺点,提出改进DPSO算法,在迭代过程中,通过调节权重因子和学习因子,降低算法过早收敛概率,减少优化结果陷入局部最优状态的可能。其次,提出一种基于多尺度小波核函数的核极限学习机(MKELM),利用不同尺度小波核函数叠加构造核极限学习机。最后将两种算法有机结合,提出一种新型的DPSO-MKELM算法,用于风力轴承的故障诊断。通过实际数据的算例验证,新算法具有更高的分类精度和较快的收敛速度。 相似文献
8.
提出一种基于连续小波变换(CWT)和坐标注意机制残差网络(CooAtten-Resnet)的弧齿锥齿轮箱智能故障诊断方法。首先将振动信号重叠采样获得大量信号样本,将这些样本通过连续小波变换将振动信号转化为时频图,并以此构建不同故障下的时频数据集,同时通过人为添加噪声样本以验证噪声对此类诊断方法的影响;然后将时频图数据集用于CooAtten-Resnet训练;最后对故障进行分类并输出诊断结果。结果表明,该方法可以准确的识别弧齿锥齿轮箱故障,无人为添加噪声的情况诊断准确率可达100%,添加噪声后在无降噪处理的情况下准确率仍在93%以上。相较于其他方法,该方法的准确率更高,抗噪能力更强,网络收敛速度更快,诊断结果更稳定。 相似文献
9.
风力发电机齿轮箱的故障诊断在风力发电机组正常运行中起着重要作用,除了识别故障类型外,故障的严重程度对风机的维护也具有指导意义,因此,一种优化堆叠诊断结构(OSDS)被提出以识别故障类型和严重性。首先对原始振动信号进行压缩采样,然后将压缩样本分别输入第1层和第2层深度信任网络(DBN),对故障类型和严重性进行识别,同时采用混沌量子粒子群优化算法(CQPSO)对每个DBN进行优化。通过两组实验得到的结果表明,故障类型诊断准确率分别达到99.24%和97.21%,故障严重程度诊断准确率达到99.06%,同时诊断时间仅为1.493和2.176 s。 相似文献
10.
11.
利用改进粒子群优化模糊C均值聚类算法对双馈风力发电机组群进行故障机组分类,并提出基于改进粒子群优化的模糊核聚类算法对双馈风力发电机组齿轮箱的已知以及未知故障进行诊断分类。通过分析实际风电场采集得来的齿轮箱振动数据,验证所提方法不仅可以准确快速地判断出故障机组,而且还可以进一步对发生的已知故障以及未知故障进行一个很好的诊断。 相似文献
12.
13.
14.
Yao Zhao Member IEEE Ziyu Song Dongdong Li Member IEEE Rongrong Qian Shunfu Lin Member IEEE 《电力系统保护与控制》2024,9(4):96-109
This paper proposes a novel fault diagnosis method by fusing the information from multi-sensor signals to improve the reliability of the conventional vibration-based wind turbine drivetrain gearbox fault diagnosis methods. The method fully extracts fault features for variable speed, insufficient samples, and strong noise scenarios that may occur in the actual operation of a wind turbine planetary gearbox. First, multiple sensor signals are added to the diagnostic model, and multiple stacked denoising auto-encoders are designed and improved to extract the fault information. Then, a cycle reservoir with regular jumps is introduced to fuse multidimensional fault information and output diagnostic results in response to the insufficient ability to process fused information by the conventional Softmax classifier. In addition, the competitive swarm optimizer algorithm is introduced to address the challenge of obtaining the optimal combination of parameters in the network. Finally, the validation results show that the proposed method can increase fault diagnostic accuracy and improve robustness. 相似文献
15.
本文对齿轮箱故障诊断特点和方法进行分析,并举例介绍了小波变换在齿轮箱故障诊断中的应用。利用小波变换对齿轮箱工况信号进行分解,重构以及提取细节信号包络谱,快速准确判断出齿轮箱设备运行状态是否异常,并利用BP神经网络进行故障诊断定位,比传统方法更有效。 相似文献
16.
通过对风机传动系统中齿轮故障进行模拟试验,构建结构风险最优的支持向量机(SVM)网络,对采集到的电磁速度信号进行快速傅里叶分解,选取高频段的频谱特性作为分量进行样本化学习,完成对齿轮故障样本的训练,使SVM具备分类功能.最后,采用SVM对齿轮箱试验台齿轮故障进行诊断分类识别,取得较好的效果,说明齿轮故障信号高频特性所包含故障信息在整个频谱中的有效性以及SVM作为一种故障诊断方法的实用性. 相似文献
17.
行星齿轮箱广泛应用于低速重载的大型机电设备中,其故障检测尤为重要。当前行星齿轮箱的故障检测主要依靠振动信号分析,然而低转速工况导致的冲击微弱以及故障冲击难以分离等问题,使得行星齿轮箱故障冲击难以发掘。针对上述瓶颈,提出一种基于编码器信号的低转速行星齿轮箱故障诊断方法。该方法首先通过内置编码器获取故障信息,避免了冗长的振动传递路径带来的不利影响。在此基础上,建立稀疏低秩分解模型,引入快速主成分追踪算法(fast principal component pursuit,FPCP)进行求解,实现低转速下行星齿轮箱故障冲击的提取。行星齿轮箱故障实验结果表明,该方法不仅能获取输入轴转速为30r/min下的故障信息,而且有效地实现故障冲击的分离。研究工作可为低转速旋转机械的故障诊断提供有效的工具。 相似文献
18.
为提高风电齿轮箱的运行效率,降低风电场的运行维护成本,结合时域统计特征分析和多传感器信息融合技术,提出了一种基于灰狼优化核极限学习机(GWO-KELM)的风电齿轮箱状态监测新方法。首先,计算原始振动信号不同的时域统计特征参数,并采用并行叠加的方式对特征级和数据级进行信息融合以得到融合数据集。其次,利用融合数据集,建立了基于GWO-KELM的故障分类识别模型。最后,运用所提方法对QPZZ-Ⅱ旋转机械振动试验台齿轮箱实测数据进行状态监测,实例结果表明了该方法的有效性和可行性,与其他同类方法相比,所提方法具有最佳分类性能。 相似文献
19.
连续隐马尔科夫模型(CHMM)应用于风机齿轮箱故障诊断,针对隐马尔可夫模型训练算法易收敛于局部最优解,提出了一种改进的BSA-CHMM参数训练算法,将鸟群算法(BSA)与Baum-Welch算法相结合,可有效的跳出局部最优解。分析振动信号并利用小波包分解与重构提取频带能量作为特征向量;将正常及各故障状态的训练样本特征作为模型观测值输入BSA-CHMM模型进行训练;最后将各检验样本特征输入各状态模型中,得到输出概率作为故障诊断的评判依据。通过Matlab仿真试验结果表明:所提出的诊断方法能够准确地诊断出故障状态,且相较于传统的CHMM训练算法能取得更好的训练结果。 相似文献