首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents a study of the removal of Cd and Zn present in the leachate from an inorganic industrial waste landfill using cationic exchange resins (Amberlite 200, 252-C, IR-120, Duolite C-464), a chelating resin, Amberlite IRC 718, and an adsorbent resin, XAD-2. The chelating resin Amberlite IRC 718 presented the higher removal in batch experiments for both metals (93% for Zn and 50% for Cd). Five hundred ten bed volumes of leachate were treated in column experiments using this material, reducing the concentrations of Cd and Zn from 18 mg/dm3 to 0.1 and 1.0mg/dm3, respectively. Regeneration of the saturated bed was achieved with 11 BV of 2M HCl.  相似文献   

2.
Admicellar sorbents for the removal of an iron matrix were prepared for the determination of trace impurities in high-purity iron. A 1.0-g amount of Amberlite XAD-4 (macroreticular styrene-divinylbenzene copolymer) was coated with 0.14-1.3 mmol of polyoxyethylene-type surfactants, including polyoxyethylene-4-tert-octylphenoxy ethers (Triton X series) and polyoxyethylene-4-isononylphenoxy ethers (PONPEs). The surfactant-coated XAD-4 was packed into a polypropylene column (7 mm i.d. x 50 mm high). A 5.0-cm(3) volume of sample solution was passed through the column at a flow rate of 0.5 cm(3) min(-1). Milligram amounts of iron(III) were effectively sorbed on the column from 8 mol dm(-3) hydrochloric acid solutions. Among the surfactants tested, polyoxyethylene(20)-4-isononylphenoxy ether (PONPE-20) showed the best performance: the iron leaked from the PONPE-20 column was 4 microg when 25 mg of iron(III) was introduced onto the column. Trace elements, such as Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II), Pb(II), and Bi(III), were not retained on the column and thus quantitatively recovered in the column effluent. The effective separation of trace elements from an iron matrix allowed their accurate determinations by inductively coupled plasma-mass spectrometry or graphite furnace atomic absorption spectrometry. The detection limits (3sigma blank) were in the nanogram per gram range. The proposed method was successfully applied to the determination of trace impurities in high-purity iron samples.  相似文献   

3.
A highly sensitive and selective method for the determination of the Be(II) ion has been developed by the use of reversed-phase high-performance liquid chromatography (HPLC) with fluorometric detection using 2-(2'-hydroxyphenyl)-10-hydroxybenzo[h]quinoline (HPHBQ) as a precolumn (off-line) chelating reagent. The reagent HPHBQ has been designed to form the kinetically inert Be chelate compatible with high fluorescence yield, which is appropriate to the HPLC-fluorometric detection system. The Be-HPHBQ chelate is efficiently separated on a LiChrospher 100 RP-18(e) column with a methanol (58.3 wt %)-water eluent containing 20 mmol kg(-1) of tartaric acid and is fluorometrically detected at 520 nm with the excitation at 420 nm. Under the conditions used, the concentration range of 20-8,000 pmol dm(-3) of Be(II) ion can be determined without interferences from 10 micromol dm(-3) each of common metal ions, typically Al(III), Cu(II), Fe(III), and Zn(II), and still more coexistence of Ca(II) and Mg(II) ions at 0.50 mmol dm(-3) and 5.0 mmol dm(-3), respectively, is tolerated. The detection limit (3a baseline fluctuation) is 4.3 pmol dm(-3) (39 fg cm(-3)). The extraordinarily high sensitivity with toughness toward the matrix influence was demonstrated with the successful application to environmental Be analyses, such as determination of Be in rainwater and tap water.  相似文献   

4.
Biosorption of lead(II) and cadmium(II) from aqueous solutions by protonated Sargassum glaucescens biomass was studied in a continuous packed bed column. The selective uptake of Pb2+ and Cd2+ was investigated in a binary system with initial concentration of 1 mM for each metal ion. The selective uptake capacities of Pb2+ and Cd2+ at complete exhaustion point were obtained 1.18 and 0.22 mmol/g, respectively; therefore, the biosorbent showed much higher relative affinity for Pb2+ than for Cd2+. The optimum range of empty bed contact time (EBCT) was identified as 5-10 min in the packed bed column. The efficiency of biosorbent regeneration by 0.1 M HCl was achieved about 60%, so that the maximum uptake capacity of Pb2+ by the regenerated biomass was determined to be 0.75 mmol/g while the same value for the original biomass was 1.24 mmol/g. The Thomas model was found in a suitable fitness with the experimental data (R2 > 0.90 and % < 50%) at all different operation stages. Monitoring of pH in the effluent of the column presented the simultaneous release of H+ with the uptake of heavy metals; hence, ion exchange was confirmed to be one of the main biosorption mechanisms.  相似文献   

5.
Orange waste, produced during juicing has been loaded with zirconium(IV) so as to examine its adsorption behavior for both As(V) and As(III) from an aquatic environment. Immobilization of zirconium onto the orange waste creates a very good adsorbent for arsenic. Adsorption kinetics of As(V) at different concentrations are well described in terms of pseudo-second-order rate equation with respect to adsorption capacity and correlation coefficients. Arsenate was strongly adsorbed in the pH range from 2 to 6, while arsenite was strongly adsorbed between pH 9 and 10. Moreover, equimolar (0.27 mM) addition of other anionic species such as chloride, carbonate, and sulfate had no influence on the adsorption of arsenate and arsenite. The maximum adsorption capacity of the Zr(IV)-loaded SOW gel was evaluated as 88 mg/g and 130 mg/g for As(V) and As(III), respectively. Column adsorption tests suggested that complete removal of arsenic was achievable at up to 120 Bed Volumes (BV) for As(V) and 8 0BV for As(III). Elution of both arsenate and arsenite was accomplished using 1 M NaOH without any leakage of the loaded zirconium. Thus this efficient and abundant bio-waste could be successfully employed for the remediation of an aquatic environment polluted with arsenic.  相似文献   

6.
The oxidative decolourization and mineralization of three reactive dyes in separately prepared aqueous solutions C.I. Reactive Yellow 3 (RY3), C.I. Reactive Blue 2 (RB2) and C.I. Reactive Violet 2 (RV2) by using homogeneous and heterogeneous Fenton and UV/Fenton processes have been investigated. The effects of H(2)O(2), Fe(2+) and Fe(0) concentrations, Fe(2+)/H(2)O(2) and Fe(0)/H(2)O(2) molar ratios at pH 3 and T=23+/-1 degrees C have been studied. Optimal operational conditions for the efficient degradation of all three dye solutions (100 mg L(-1)) were found to be Fe(2+)/H(2)O(2)=0.5mM/20mM and Fe(0)/H(2)O(2)=2mM/1mM. The experimental results showed that the homogeneous Fenton process employing UV irradiation was the most effective. By using this process, the high levels of mineralization (78-84%) and decolourization (95-100%) were achieved. Pseudo-first-order degradation rate constants were obtained from the batch experimental data.  相似文献   

7.
The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation.  相似文献   

8.
The auto-ignition of NH(3)/CH(4)/H(2)/air mixtures constitutes a hazard that is of much concern in urea plants. In this study, the auto-ignition behaviour of NH(3)/CH(4)/H(2)/air mixtures is investigated experimentally for pressures up to 7500 kPa. The experiments were carried out in a closed spherical vessel with a volume of 8 dm(3). The concentration and the pressure dependence of the auto-ignition temperature (AIT) were determined for four types of mixtures: NH(3)/air, NH(3)/CH(4)/air, NH(3)/H(2)/air and NH(3)/CH(4)/H(2)/air. The most ignitable NH(3)/air mixtures were situated between stoichiometry and the upper flammability limit. Small amounts of methane and hydrogen decrease the AIT of NH(3)/air mixtures to a large extent. The pressure dependence of the AIT could be correlated by a Semenov relationship. For the multi-fuel mixtures, a distinct deviation from the Semenov correlation was observed at the lowest temperatures. With respect to the explosion hazard in urea plants, the experimental results were used to assess realistic AIT values in the pool reactor and the ammonia scrubber, operating at a pressure of 15,000 kPa.  相似文献   

9.
Arsenite (As(III)) and arsenate (As(V)) removal by direct contact membrane distillation (DCMD) were investigated with self-made polyvinylidene fluoride (PVDF) membranes in the present work. Permeability and ion rejection efficiency of the membrane were tested before the arsenic removal experiments. A maximum permeate flux 20.90 kg/m(2)h was obtained, and due to the hydrophobic property, the PVDF membrane had high rejection of inorganic anions and cations which was independent of the solution pH and the temperature. The experimental results indicated that DCMD process had higher removal efficiency of arsenic than pressure-driven membrane processes, especially for high-concentration arsenic and arsenite removal. The experimental results indicated that the permeate As(III) and As(V) were under the maximum contaminant limit (10 microg/L) until the feed As(III) and As(V) achieved 40 and 2000 mg/L, respectively. The 250 h simultaneous DCMD performance of 0.5mg/L As(III) and As(V) solution was carried out, respectively. The permeate arsenic was not detected during the process which showed the PVDF membrane had stable arsenic removal efficiency. Membrane morphology changed slightly after the experiments, however, the permeability and the ion rejection of the membrane did not change.  相似文献   

10.
Studies on the development of an arsenic remediation approach using Fenton's reagent (H2O2 and Fe(II)) followed by passage through zero valent iron is reported. The efficiency of the process was investigated under various operating conditions. Potable municipal water and ground water samples spiked with arsenic(III) and (V) were used in the investigations. The arsenic content was determined by ICP-QMS. A HPLC-ICPMS procedure was used for the speciation and determination of both As(III) and (V) in the processed samples, to study the effectiveness of the oxidation step and the subsequent removal of the arsenic.The optimisation studies indicate that addition of 100 microl of H2O2 and 100 mg of Fe(II) (as ferrous ammonium sulphate) per litre of water for initial treatment followed by passing through zero valent iron, after a reaction time of 10 min, is capable of removing arsenic to lower than the US Environmental Protection Agency (EPA) guideline value of 10 microg/l, from a starting concentration of 2 mg/l of As(III). Using these suggested amounts, several experiments were carried out at different concentrations of As(III). Residual hydrogen peroxide in the processed samples can be eliminated by subsequent chlorination, making the water, thus, processed, suitable for drinking purposes. This approach is simple and cost effective for use at community levels.  相似文献   

11.
The applicability of manganese-coated sand (MCS) and iron-coated sand (ICS) for the treatment of As(III) via oxidation and adsorption processes was investigated. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) were used to observe the surface properties of the coated layer. In the batch adsorption, the adsorption rate of As(V) onto ICS was greater than that of As(III), and ICS showed a greater adsorption capacity for the removal of As(V) than As(III). From a bench-scale column test, a column reactor packed with both MCS and ICS was found to be the best system for the treatment of As(III) due to the promising oxidation efficiency of As(III) to As(V) by MCS and adsorption of As(V) by both MCS and ICS. From these bench-scale results, the treatment of synthetic wastewater contaminated with As(III) was investigated using a pilot-scale filtration system packed with equal amounts (each 21.5 kg) of MCS at the bottom and ICS on the top. The height and diameter of the column were 200 and 15 cm, respectively. As(III) solution was introduced into the bottom of the filtration system, at a speed of 5 × 10−3 cm s−1, over 148 days. The breakthrough of total arsenic in the mid-sampling (end of the MCS bed) and final-sampling (end of the ICS bed) positions began after 18 and 44 days, respectively, and showed complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position began after 18 days, the concentration of As(III) in the effluent was below 50 μg L−1 for up to 61 days. This result indicates that MCS has sufficient oxidizing capacity for As(III), and 1 kg of MCS can oxidize 93 mg of As(III) for up to 61 days. When the complete breakthrough of total arsenic occurred, the total arsenic removed by 1 kg of MCS was 79.0 mg, suggesting MCS acts as an adsorbent for As(V), as well as an oxidant for As(III). From this work, a filtration system consisting of both MCS and ICS can potentially be used a new treatment system to simultaneously treat As(III) and As(V).  相似文献   

12.
The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the pH range of 2.00-7.30. The results showed that the initial pH of Cr(VI) solution significantly affects the reduction capacity of scrap iron. The highest reduction capacity was determined to be 19.2 mg Cr(VI)/g scrap iron, at pH 2.50, and decreased with increasing the initial pH of Cr(VI) solution. A considerable decrease in scrap iron reduction capacity (25%) was also observed at pH 2.00, as compared to pH 2.50, due to the increased contribution of H(+) ions to the corrosion of scrap iron, which leads to a rapid decrease in time of the scrap iron volume. Over the pH range of 2.50-7.30, hexavalent chromium concentration increases slowly in time after its breakthrough in column effluent, until a steady-state concentration was observed; similarly, over the same pH range, the amount of solubilized Cr(III) in treated column effluent decreases in time, until a steady-state concentration was observed. The steady-state concentration in column effluent decreased for Cr(VI) and increased for Cr(III) with decreasing the initial pH of Cr(VI) solution. No steady-state Cr(VI) or Cr(III) concentrations in column effluent were observed at pH 2.00. Over the entire studied pH range, the amount of Fe(total) in treated solution increases as the initial pH of column influent is decreased; the results show also a continuously decrease in time of Fe(total) concentration, for a constant initial pH, due to a decrease in time of iron corrosion rate. Cr(III) concentration in column effluent also continuously decreased in time, for a constant initial pH, over the pH range of 2.50-7.30. This represents an advantage, because the amount of precipitant agent used to remove Fe(total) and Cr(III) from the column effluent will also decrease in time. The optimum pH for Cr(VI) reduction with scrap iron in continuous-flow system was established at the value of 2.50.  相似文献   

13.
The excessive release of lead from lead acid batteries, smelting plant into the environment is a major concern worldwide. Adsorption process is among the most effective techniques for lead removal from wastewater and activated carbon has been widely used as an adsorbent. In this paper an attempt has been made to investigate the adsorption behaviour of Pb(II) from aqueous systems onto granular activated carbon using the batch mode and continuous mode in a packed bed column with more successive service and regeneration. The experiments were performed at constant temperature and dimensions of column and packed bed of granular activated carbon with variation of flows through the bed and concentrations of lead solutions. Breakthrough points were found out for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate from 4 to 16 m(3)/h m(2) and feed concentrates from 20 to 60 mg/l. Granular activated carbon column regeneration using 0.5 M concentration of HNO(3) has been investigated. Results indicate encouraging performance towards removal of Pb(II).  相似文献   

14.
对钒电池负极电解液中活性物质V(III)在不同硫酸浓度、不同温度条件下的溶解性规律进行了深入研究,同时对V(III)-H2SO4体系电化学性能进行了初步探讨.结果表明:V(III)的溶解是一个放热过程,在15~40℃范围内,V(III)的溶解度随着温度升高而逐渐降低;并且溶液中V(III)会以V O V形式形成二聚体,在低硫酸浓度下,V(III)可以高浓度长时间稳定存在,随硫酸浓度的增大,V(III)溶解度逐渐降低,其中30℃、1 mol/L H2SO4条件下V(III)浓度可高达2.730 mol/L;进一步通过电化学测试,发现V(III)-H2SO4体系是不可逆体系,H2SO4浓度的增大有益于提高V(III)/V(II)氧化还原反应的可逆性.  相似文献   

15.
Trivalent and hexavalent chromium have been successfully separated and estimated from different solutions using 1-(3,4-dihydroxybenzaldehyde)-2-acetylpyridiniumchloride hydrazone (DAPCH) loaded on Duolite C20 in batch and column modes. The obtained modified resin [DAPCH-Duolite C20] was identified by C, H and N analyses and infrared spectra. The presence of multi-active chelating sites gives the ability for DAPCH to bind more chromium, Cr(III) by forming stable complex and chromate by forming ion pair molecule [H(2)DAPCH-Duolite C20](2+)[Cr(2)O(7)](2-) (H(2)DAPCH-Duolite C20 is the protonated form in acidic medium). The extraction isotherms were measured at different pH. The pH was found to be the backbone for the separation procedure in which the Cr(VI) and Cr(III) ions are sorbed selectively from aqueous solution at pH 2 and 6, respectively. The sorbed ions can be eluted using different concentrations of HCl. The saturation sorption capacity (41.6 and 20.05 mg g(-1)), the preconcentration factor (150 and 200) and the detection limit (13.3 and 10.0 ppb) were calculated for Cr(III) and (VI). The loaded resin can be regenerated for at least 50 cycles. The utility of the modified resin was tested in aqueous samples and shows R.S.D. value of <4% reflecting its accuracy and reproducibility.  相似文献   

16.
Fenton's reagent is the result of reaction between hydrogen peroxide (H(2)O(2)) and ferrous iron (Fe(2+)), producing the hydroxyl radical (-*OH). The hydroxyl radical is a strong oxidant capable of oxidizing various organic compounds. The mechanism of oxidizing trichloroethylene (TCE) in groundwater and soil slurries with Fenton's reagent and the feasibility of injecting Fenton's reagent into a sandy aquifer were examined with bench-scale soil column and batch experiment studies. Under batch experimental conditions and low pH values ( approximately 3), Fenton's reagent was able to oxidize 93-100% (by weight) of dissolved TCE in groundwater and 98-102% (by weight) of TCE in soil slurries. Hydrogen peroxide decomposed rapidly in the test soil medium in both batch and column experiments. Due to competition between H(2)O(2) and TCE for hydroxyl radicals in the aqueous solutions and soil slurries, the presence of TCE significantly decreased the degradation rate of H(2)O(2) and was preferentially degraded by hydroxyl radicals. In the batch experiments, Fenton's reagent was able to completely dechlorinate the aqueous-phase TCE with and without the presence of soil and no VOC intermediates or by-products were found in the oxidation process. In the soil column experiments, it was found that application of high concentrations of H(2)O(2) with addition of no Fe(2+) generated large quantities of gas in a short period of time, sparging about 70% of the dissolved TCE into the gaseous phase with little or no detectable oxidation taking place. Fenton's reagent completely oxidized the dissolved phase TCE in the soil column experiment when TCE and Fenton's regent were simultaneously fed into the column. The results of this study showed that the feasibility of injecting Fenton's reagent or H(2)O(2) as a Fenton-type oxidant into the subsurface is highly dependent on the soil oxidant demand (SOD), presence of sufficient quantities of ferrous iron in the application area, and the proximity of the injection area to the zone of high aqueous concentration of the target contaminant. Also, it was found that in situ application of H(2)O(2) could have a gas-sparging effect on the dissolved VOC in groundwater, requiring careful attention to the remedial system design.  相似文献   

17.
The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R(2)) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO(3) solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.  相似文献   

18.
Degradation of cyanobacteria toxin by advanced oxidation processes   总被引:3,自引:0,他引:3  
Advanced oxidation processes (AOPs) using O(3), H(2)O(2), O(3)/H(2)O(2), O(3)/Fe(II), and Fenton treatment were investigated for the degradation of aqueous solutions of cyanobacteria. The effects of concentration of reactants, temperature, and pH on toxins degradation were monitored and the reaction kinetics was assessed. O(3) alone or combined with either H(2)O(2) or Fe(II) were efficient treatment for toxins elimination. A higher toxin oxidation tendency was observed with Fenton reaction; total toxins degradation (MC-LR and MC-RR) was achieved in only 60s. The ozonation treatment was successfully described by second-order kinetics model, with a first-order with respect to the concentration of either ozone or toxin. At 20 degrees C, with initial concentration of MC-LR of 1mg/L, the overall second-order reaction rate constant ranged from 6.79 x 10(4) to 3.49 x 10(3)M(-1)s(-1) as the solution pH increased from 2 to 11. The reaction kinetics of the other AOPs (O(3)/H(2)O(2), O(3)/Fe(II), and Fenton), were fitted to pseudo first-order kinetics. A rapid reaction was observed to took place at higher initial concentrations of O(3), H(2)O(2) and Fe(II), and higher temperatures. At pH 3, initial concentration of toxin of 1mg/L, the pseudo first-order rate constant, achieved by Fenton process, was in order of 8.76+/-0.7s(-1).  相似文献   

19.
The removal of the Cr(III) ion from aqueous solutions with the Lewatit S 100 ion-exchange resin is described; and the performance of this resin was compared with Chelex-100 resin. The effect of adsorbent dose, initial metal concentration, contact time, pH and temperature on the removal of Cr(III) was investigated. Lewatit S 100 shows a remarkable increase in sorption capacity for Cr(III). The Batch ion-exchange process was relatively fast; and it reached equilibrium after about 150 min of contact. The ion-exchange process, which is pH dependent show maximum removal of Cr(III) in the pH range 2.8-4.0 for an initial Cr(III) concentration of 1.0 x 10(-3)M. The equilibrium constants were 36.67 at pH value 3.5 for Lewatit S 100 and 6.64 at pH value 4.5 for Chelex-100 resin. Both of the resins had high-bonding constants. The equilibrium related to their ion-exchange capacity and the amount of the ion exchange was obtained by using the plots of the Langmuir adsorption isotherm. It was observed that the maximum ion-exchange capacity of 0.39 mmol of Cr(III)/g for Lewatit S 100 and 0.29 mmol of Cr(III)/g for Chelex-100 was achieved at optimum pH values of 3.5 and 4.5, respectively. The thermodynamic equilibrium constant and the Gibbs free energy flow were calculated for each system. The ion exchange of Cr(III) on these cation-exchange resins followed first-order reversible kinetics. The intra-particle diffusion of Cr(III) on ion-exchange resin represented the rate-limiting step. The rise in temperature caused a slight increase in the value of the equilibrium constant (K(c)) for the sorption of Cr(III) ion for both resins.  相似文献   

20.
本文介绍用HPGFC对凤凰木种子中提取的三种毒蛋白分别进行色谱分析。并对分离的蛋白峰进行紫外光谱扫描来确认蛋白的纯度。根据标准分子量曲线,分别得到它们的分子量并与SDS-PAGF所得分子量进行比较,用柱后衍生法测定了三个蛋白各自的氨基酸组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号