首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, has been investigated as a potent mediator of brain tumor angiogenesis and tumor growth. We evaluated the effect of VEGF expression on the pathophysiology of tumor growth in the brain. Human SK-MEL-2 melanoma cells, with minimal VEGF expression, were stably transfected with either sense or antisense mouse VEGF cDNA and used to produce intracerebral xenografts. Vascular permeability, blood volume, blood flow, and tumor fluorodeoxyglucose metabolism were assessed using tissue sampling and quantitative autoradiography. Tumor proliferation was assessed by measuring bromodeoxyuridine labeling indices. Tumor vascular density and morphological status of the blood-brain barrier were evaluated by immunohistochemistry. SK-MEL-2 cells transfected with sense VEGF (V+) expressed large amounts of mouse and human VEGF protein; V+ cells formed well-vascularized, rapidly growing tumors with minimal tumor necrosis. V+ tumors had substantial and significant increases in blood volume, blood flow, vascular permeability, and fluorodeoxyglucose metabolism compared to wild-type and/or V- (antisense VEGF) tumors. VEGF antisense transfected V- expressed no detectable VEGF protein and formed minimally vascularized tumors. V- tumors had a very low initial growth rate with central necrosis; blood volume, blood flow, vascular permeability, and glucose metabolism levels were low compared to wild-type and V+ tumors. A substantial inhibition of intracerebral tumor growth, as well as a decrease in tumor vascularity, blood flow, and vascular permeability may be achieved by down-regulation of endogenous VEGF expression in tumor tissue. VEGF-targeted antiangiogenic gene therapy could be an effective component of a combined strategy to treat VEGF-producing brain tumors.  相似文献   

2.
3.
4.
5.
BACKGROUND: The rationale for the study was based on the hypothesis that decreased or absent expression on tumor cells of adhesion molecules, the class I or class II major histocompatibility complex (MHC) molecules, or costimulatory molecules might be responsible, in part, for the poor ability of squamous cell carcinoma of the head and neck (SCCHN) to induce generation of antitumor effector cells in vitro and in vivo. OBJECTIVE: To investigate expression of intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function associated antigen-3 (LFA-3) and distribution of the costimulatory molecules, B7.1, B7.2, and CD40, and of class I and class II MHC molecules on SCCHN cells in situ and on SCCHN cell lines. SETTING: University medical centers. DESIGN: Expression of ICAM-1, LFA-3, MHC molecules, B7.1, B7.2, and CD40 was evaluated in human SCCHN biopsy specimens by immunohistochemistry and on SCCHN cell lines by flow cytometry. To confirm our hypothesis that impaired T-cell activation observed in patients with SCCHN is caused by the absence of costimulatory B7 molecules, a B7-negative SCCHN cell line was transduced with the B7.1 gene, using a retroviral vector, and tested in mixed lymphocyte tumor cocultures. RESULTS: In contrast to abundant expression of ICAM-1, LFA-3, class I MHC molecules, and CD40, the absence of B7.1, B7.2, and class II MHC molecules on tumor cells was observed in situ and in vitro. Lymphocytes and antigen-presenting cells in inflammatory infiltrates surrounding tumor cell clusters expressed both costimulatory and adhesion molecules. The SCCHN lines negative for B7.1 and class II MHC antigens failed to induce proliferation of T cells in mixed lymphocyte tumor cocultures. However, when these cell lines were transduced with the B7.1 gene, their ability to induce T-cell proliferation in mixed lymphocyte tumor cocultures was restored. CONCLUSIONS: The absence of B7 protein or class II MHC antigen expression on human SCCHN cells is responsible for the failure of these tumors to induce proliferation of T cells in vitro. Transduction of the B7.1 gene into SCCHN restores the ability of the tumor to induce T-cell proliferation in vitro.  相似文献   

6.
BACKGROUND: Phosphorothioate oligodeoxynucleotides ([S]ODNs) contain a modified internucleoside phosphate backbone. Antisense [S]ODNs targeted to specific oncogenes have been used with some therapeutic success in animal models human leukemia; however, the potential for antisense [S]ODN treatment of solid tumors has only recently been explored. Purpose: We evaluated the effects of antisense [S]ODNs targeted to the c-myc oncogene on the proliferation of human melanoma cells in vitro and on the growth of human melanoma xenografts in CD-1 nude (nu/nu) mice, METHODS: The effects of 15-mer [S]ODNs containing c-myc sense, c-myc antisense, and two different scrambled sequences on the proliferation and viability of cultures of three established human melanoma cell lines (M14, JR8, and PLF2) were determined by measuring cell numbers and use of the trypan blue exclusion test. The induction of apoptosis in these cells following treatment with [S]ODNs was evaluated by fluorescence-activated cell sorter (FACS) analysis. FACS analysis was also used to determine the effects of [S]ODN treatment on the proliferation of primary cultures of a human melanoma explant (NG cells). The expression of c-Myc protein in cultured NG cells after treatment with [S]ODNs was examined by western blot analysis. The antitumor activity and the toxic effects of several [S]ODN treatment regimens were monitored by measuring differences in tumor weight (percent tumor weight inhibition), tumor growth rate (tumor growth inhibition), animal lifespan (percent increase in lifespan), the number of toxic deaths and the median number of long metastases in treated and control mice bearing NG xenografts. c-Myc protein expression in NG tumor cells following [S]ODN treatment was evaluated by FACS analysis, and the extent of apoptosis in these cells was determined by FACS analysis and morphologic examination. RESULTS: Treatment with antisense [S]ODNs, but not the others, inhibited the growth of all tested melanoma cultures in vitro; FACS analysis revealed that growth inhibition was associated with the induction of apoptosis. Antisense [S]ODN treatment also led to reduced celluLar levels of c-Myc protein. In vivo, [S]ODN antitumor activity and toxicity were dose and schedule dependent; however, only antisense [S]ODNs exhibited antitumor activity. Mice bearing NG xenografts treated with antisense [S]ODNs showed a marked inhibition of tumor growth, a reduction in the number of long metastases, and an increase in life span. Reduced levels of c-Myc protein and increased levels of apoptosis were also observed in NG tumor cells following antisense [S]ODN treatment. CONCLUSIONS: treatment of human melanoma cells and solid tumors with antisense [S]ODNs targeted to c-Myc inhibits their growth and is associated with the induction of apoptosis.  相似文献   

7.
OBJECTIVES: Tumor suppressor gene mutations in both p53 and PTEN/MMAC1 genomic DNA have been detected in many types of cancer. The purpose of this study was to investigate the presence and importance of PTEN/MMAC1 mutations in squamous cell carcinomas. METHODS: Exons of each gene were amplified after polymerase chain reaction (PCR) using genomic DNA derived from cell lines of squamous cell carcinoma of the head and neck (SCCHN) and snap-frozen biopsy specimens from primary established head and neck tumors. The amplified and purified DNA was then sequenced directly. RESULT: As anticipated, point mutations of the p53 gene were found in 80% of cell lines examined. A single base mutation in codon 151 was found in six of 10 cell lines studied. PTEN/MMAC1 gene mutations were found in neither the cell lines tested nor the tumor biopsy samples. CONCLUSION: This study, as well as a large volume of data, confirms that mutations of the p53 gene are frequent events in head and neck cancer cell lines. Although PTEN/MMAC1 gene mutations have been found in a variety of carcinomas, this gene was not found to be mutated in SCCHN cell lines or in primary squamous cell carcinomas of the head and neck. This information is useful for further studies of mutations in these cell lines.  相似文献   

8.
9.
10.
11.
The epidermal growth factor receptor (EGFR) is a protein tyrosine kinase expressed on many types of tumor cells, including breast, ovarian, bladder, head and neck, and prostatic carcinoma. There seems to be an association between up-regulation of the EGFR and poor clinical prognosis for a number of human cancers. The 225 antibody is a highly specific murine monoclonal antibody that binds specifically to the human EGFR with an affinity equal to its ligand, competes with the ligand for binding, and blocks activation of the receptor tyrosine kinase. In addition, 225 has been shown to inhibit the growth of human tumor xenografts in athymic nude mice. The 225 antibody has recently been chimerized with human IgG1 in its constant region to increase its clinical utility by decreasing the potential for generation of human antimouse antibodies in recipients. This report compares the biological effects of 225 and its chimeric counterpart (designated C225) against established A431 tumor xenografts in nude mice. The results of these experiments indicated that C225 was more effective than 225 in inhibiting tumor growth in this model. In addition, many of the animals treated with C225 were tumor free at the end of each treatment protocol. It was determined that the dissociation constant of C225 was about 5-fold lower than 225. This suggested that the increased capacity of C225 to compete with ligand for binding to the EGFR was responsible for its enhanced in vivo antitumor effect.  相似文献   

12.
Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and demonstrate that it is feasible to design antisense oligonucleotide inhibitors of translation that do not require RNase H activation. The data demonstrate that chemically modified antisense oligonucleotides can be used as tools to identify important regulatory sequences and/or structures important for efficient translation of HCV.  相似文献   

13.
14.
15.
Increased expression of the RI alpha subunit of cAMP-dependent protein kinase type I has been shown in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. The sequence-specific inhibition of RI alpha gene expression by an antisense oligodeoxynucleotide results in the differentiation of leukemia cells and growth arrest of cancer cells of epithelial origin. A single-injection RI alpha antisense treatment in vivo also causes a reduction in RI alpha expression and inhibition of tumor growth. Tumor cells behave like untransformed cells by making less protein kinase type I. The RI alpha antisense, which produces a biochemical imprint for growth control, requires infrequent dosing to restrain neoplastic growth in vivo.  相似文献   

16.
17.
Increasing evidence shows that dysregulated epidermal growth factor receptor (EGFR) signalling plays an important part in neoplasia. When over expressed or mutated, EGFR is frequently associated with more aggressive tumour growth, poor patient prognosis and resistance of tumours to cytotoxic agents, including radiation. The present studies with murine carcinomas showed that there is an inverse correlation between the level of EGFR and tumour radiocurability. Likewise, the present clinical study in patients with head and neck cancer shows that EGFR over expression correlates with poorer tumour response to radiotherapy. Adding EGFR to tumour cells in vitro protected cells against the cytotoxic action of radiation, whereas blocking EGFR with anti-EGFR antibodies enhanced cell radiosensitivity. A casual relationship between EGFR and increased cellular resistance to radiation was established by transferring the EGFR gene into low EGFR-expressing radiosensitive tumour cells, which then become radioresistant. Radiation activated EGFR and its downstream signalling pathways in radioresistant but not in radiosensitive tumours, and this effect was associated with increased resistance to radiation, and enhanced repopulation in irradiated tumours. Increasing evidence shows that blockage of EGFR or interference with any of the steps in its signal transduction cascade can counteract negative outcomes of EGFR signalling, which has recently been explored as a therapeutic strategy in cancer treatment. The present findings demonstrate that treatment of human tumour xenografts with C225, an anti-EGFR monoclonal antibody, dramatically enhanced tumour response to radiation. Overall, the findings show that over expression of EGFR may serve as a predictor of tumour treatment outcome by radiotherapy and as a therapeutic target to enhance the efficacy of radiotherapy.  相似文献   

18.
Oncogene-bearing transgenic mice develop various kinds of tumors depending on both the regulatory sequences and the specific oncogene used. These mice not only help to clarify the pathogenetic pathways leading to tumor formation, but can also be useful as models to test novel therapeutic strategies, including gene therapy. We have previously reported the establishment of an MMTV-neu (ErbB-2) transgenic mouse lineage, in which 100% of females develop breast tumors with many features similar to their human counterparts; these tumors are due to the over-expression of the activated rat neu oncogene in the mammary gland. From one such mouse we established a cell line of mammary adenocarcinoma named MG1361. We report here that the growth of this cell line can be inhibited in vitro and in vivo by transfection of a plasmid vector carrying an antisense anti-neu construct. This inhibitory effect is specific, as it is related to the expression of the antisense transgene (determined by RT-PCR), and to a reduction in neu mRNA and protein, as determined by Northern and Western blot analyses. Moreover, inoculation of cells carrying the antisense or the control vector in nude mice demonstrated that the morphological and biochemical effects elicited by the antisense construct resulted in a significantly slower rate of in vivo growth of tumor xenografts. Finally, significant mammary tumor growth inhibition was obtained after liposome-mediated direct inoculation of the same antisense vector in tumors spontaneously arising in MMTV-neu mice. Taken together, these findings suggest that targeting neu expression by an integrated large anti-neu antisense segment affects the in vivo growth of these tumors.  相似文献   

19.
The p53 gene has been correlated with disease progression in a number of human malignancies, and p53 abnormalities are found in a high percentage of head and neck squamous cell carcinomas. The objectives of this study were 1. to correlate p53 expression with disease progression in squamous cell carcinoma of the head and neck (SCCHN), and 2. to determine whether there are site-specific differences in p53 expression. Primary lesions and/or lymph node metastases from 147 patients with invasive SCCHN were immunostained for p53 overexpression. Expression of p53 was similar (42% versus 43%) in primary lesions and lymph node metastases. Expression also did not vary significantly by site in the head and neck. In conclusion, increased p53 expression did not correlate with disease progression in our series of patients with invasive SCCHN. The finding of a lack of increased expression with disease spread to lymph nodes supports the belief that p53 alterations occur early in head and neck carcinogenesis.  相似文献   

20.
Up-regulation of CD44 variant isoforms has been linked to the progression of epithelial tumors and the metastatic phenotype. Here we report a functional role for CD44 variant isoforms in colorectal cancer metastasis. An antisense mRNA approach was used to down-regulate CD44 variant isoforms containing CD44 variant 6 (v6) in the metastatic colorectal tumor cell line HT29. Cell lines stably expressing antisense CD44 exon 10 (v6) showed reduced expression of alternatively spliced CD44 variant isoforms but no significant change in expression of CD44 core protein, as judged by immunohistochemical analysis using CD44 domain-specific monoclonal antibodies. Expression of antisense exon 10 (v6) had no effect on HT29 tumor cell proliferation in vitro or the ability of the cells to bind immobilized hyaluronan, but it resulted in a reduced capacity to form liver metastases in nude mice following intrasplenic injection. Metastases were not detected in nude mice inoculated with antisense CD44 exon 10 (v6)-expressing cell lines after 4 months, against a background of a 30% metastasis rate in the control HT29 parental and vector alone transfected lines. Furthermore, whereas 82% of mice intrasplenically injected with control HT29 parental and vector alone cell lines developed tumors in incisional wound sites, none of the mice injected with antisense exon 10 expressing HT29 cells developed similar tumors. This is the first demonstration that antisense RNA can be used to selectively inhibit expression of specific domains of a molecule generated through alternative mRNA splicing while allowing expression of core domains to remain unaffected. Furthermore, these results provide direct evidence for a functional role of CD44 variant isoforms in the metastasis of human colorectal tumor cells and may suggest a critical role for CD44 variants in promoting cell growth specifically in the cytokine/growth factor-enriched environment of a wound site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号