首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the past decades, increasing demand in aircraft industry for high-performance, lightweight structures have stimulated a strong trend towards the development of refined models for fibre-metal laminates (FMLs). Fibre metal laminates are hybrid composite materials built up from interlacing layers of thin metals and fibre reinforced adhesives. The most commercially available fibre metal laminates (FMLs) are ARALL (Aramid Reinforced Aluminium Laminate), based on aramid fibres, GLARE (Glass Reinforced Aluminium Laminate), based on high strength glass fibres and CARALL (Carbon Reinforced Aluminium Laminate), based on carbon fibres. Taking advantage of the hybrid nature from their two key constituents: metals (mostly aluminium) and fibre-reinforced laminate, these composites offer several advantages such as better damage tolerance to fatigue crack growth and impact damage especially for aircraft applications. Metallic layers and fibre reinforced laminate can be bonded by classical techniques, i.e. mechanically and adhesively. Adhesively bonded fibre metal laminates have been shown to be far more fatigue resistant than equivalent mechanically bonded structures.  相似文献   

2.
Crack closure in fibre metal laminates   总被引:1,自引:0,他引:1  
GLARE is a fibre metal laminate (FML) built up of alternating layers of S2-glass/FM94 prepreg and aluminium 2024-T3. The excellent fatigue behaviour of GLARE can be described with a recently published analytical prediction model. This model is based on linear elastic fracture mechanics and the assumption that a similar stress state in the aluminium layers of GLARE and monolithic aluminium result in the same crack growth behaviour. It therefore describes the crack growth with an effective stress intensity factor (SIF) range at the crack tip in the aluminium layers, including the effect of internal residual stress as result of curing and the stiffness differences between the individual layers. In that model, an empirical relation is used to calculate the effective SIF range, which had been determined without sufficiently investigating the effect of crack closure. This paper presents the research performed on crack closure in GLARE. It is assumed that crack closure in FMLs is determined by the actual stress cycles in the metal layers and that it can be described with the available relations for monolithic aluminium published in the literature. Fatigue crack growth experiments have been performed on GLARE specimens in which crack growth rates and crack opening stresses have been recorded. The prediction model incorporating the crack closure relation for aluminium 2024-T3 obtained from the literature has been validated with the test results. It is concluded that crack growth in GLARE can be correlated with the effective SIF range at the crack tip in the aluminium layers, if it is determined with the crack closure relation for aluminium 2024-T3 based on actual stresses in the aluminium layers.  相似文献   

3.
《Composites》1991,22(2):135-141
A new hybrid composite (CARALL), consisting of thin layers of carbon fibre/ epoxy prepreg sandwiched between aluminium sheets, has been developed. It is shown that this class of materials offers higher modulus, higher tensile strength and lower density than 2024-T3 alloy in the longitudinal direction. Under tension-tension fatigue loading, the hybrid laminates showed superior fatigue crack propagation resistance in the longitudinal direction, which may be attributed to the bridging effect imposed by the intact fibres in the crack wake. It has also been shown that the effectiveness of fatigue crack growth reduction increases with the thickness of the carbon fibre/epoxy layer. The resistance to fatigue crack propagation can be further improved by introducing compressive residual stresses in the aluminium layer by postcure stretching the laminate in the plastic region of the aluminium alloy.  相似文献   

4.
Fibre metal laminates (FMLs), such as glass reinforced aluminium (GLARE), are a family of materials with excellent damage tolerance and impact resistance properties. This paper presents an evaluation of the low velocity impact behaviour and the post-impact fatigue behaviour of GLARE laminate adhesively bonded to a high strength aluminium alloy substrate as a fatigue crack retarder. The damage initiation, damage progression and failure modes under impact and fatigue loading were examined and characterised using an ultrasonic phased array C-scan together with metallography and scanning electron microscopy (SEM). After impact on the substrate, internal damage to the GLARE bonded on the opposite side of the substrate occurred in the form of fibre and matrix cracking. No delamination was detected at the GLARE/substrate bond. Before impact the bonded GLARE strap caused reductions in substrate fatigue crack growth rate of up to a factor of 5. After impact the retardation was a factor of 2. The results are discussed in terms of changes to the GLARE stiffness promoted by the impact damage.  相似文献   

5.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

6.
The crack growth behaviour of hybrid boron/glass/aluminium fibre metal laminates (FMLs) under constant‐amplitude fatigue loading was investigated. The hybrid FMLs consist of Al 2024‐T3 alloy as the metal layers and a mixture of boron fibres and glass fibres as the fibre layers. Two types of boron/glass/aluminium laminates were fabricated and tested. In the first type, the glass fibre/prepreg and the boron fibre/prepreg were used separately in the fibre layers, and in the second type, the boron fibres and the glass fibres were uniformly mingled together to form a hybrid boron fibre/glass fibre prepreg. An analytical model was also proposed to predict the fatigue crack growth behaviour of hybrid boron/glass/aluminium FMLs. The effective stress intensity factor at a crack tip was formulated as a function of the remote stress intensity factor, crack opening stress intensity factor, and the bridging stress intensity factor. The bridging stress acting on the delamination boundary along the crack length was also calculated based on the crack opening relations. Then, the empirical Paris‐type fatigue crack growth law was used for predicting the crack growth rates. A good correlation between the predicted and experimental crack growth rates has been obtained.  相似文献   

7.
Under fatigue conditions fibre reinforced aluminium–lithium laminates do not respond in the same manner as monolithic aluminium alloys. The variation of fatigue crack growth rates with initial loading condition has been examined for both carbon and glass fibre reinforced laminates, and compared with the behaviour of unreinforced 8090 aluminium–lithium alloy for a range of conditions (different initial nominal stress intensity factor range, load range and reversed loading). During fatigue, cracks grow in the metal layers of these laminates whilst the fibres in the crack wake remain intact, bridging the crack faces. The fibre bridging mechanism, inherent in this laminate system, reduces the fatigue crack growth rate. The magnitude of the bridging effect appears to be inversely related to the applied load range. This relationship can account for the behaviour observed in the performed experiments. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
ARALL (Aramid Fibre Reinforced Aluminum Laminate)-A New Fatigue Resistant Hybrid Composite High fuel expenses and the tendency to build larger aircrafts are two main factors forcing the aircraft engineers to develop structures which allow for higher design stress levels. Higher design stress levels require an increasing concern with the fatigue behavior of the structure. One way to solve the problem is to develop new high strength fatigue resistant materials. In this paper a material of this type is presented: ARALL, an aramid fibre reinforced aluminum laminate. This hybrid material consists of thin sheets of a high strength aluminum alloy which are bonded together. Into the bond-line thin layers of aramid fibres are embedded. As soon as fatigue cracks are initiated in the metallic part of the hybrid composite material during the fatigue loading, the strong and fatigue insensitive aramid fibres remain unbroken behind the propagating crack. They hinder the crack opening and reduce the stress intensity factor at the crack tip in the metal part of the hybrid composite. This mechanism leads to a significant reduction of the crack growth and can be enhanced by introducing favourable residual stresses into the hyb- rid material. For an optimized ARALL material an aluminum sheet thickness of about 0.5 mm and an aramid layer thickness of about 0.25 mm (with a fibre volume content of about 40–50%) are chosen. ARALL decreases the crack growth rates by orders of magnitude, as compared to monolithic aluminum sheets, and is an extremely damage tolerant material.  相似文献   

9.
GLARE is a new aerospace structural material composed of alternating, bonded layers of aluminium alloy and glass fibre reinforced plastic. The results of an experimental study are presented here concerning mechanical fatigue testing of GLARE structural specimens in conditions relevant to the acoustic fatigue problem.

Endurance testing of 35 GLARE Tee-coupons under simulated random acoustic loading has been carried out and resonance frequency, damping loss factor, and strain response of the specimens have been experimentally determined. CFRP specimens have also been tested to provide a benchmark against which to compare the properties of GLARE. FE analysis of the coupons has also been carried out to support the experimental work and the theoretical results have been compared with the experimental data.

Damage mechanisms have been observed and fatigue data established. Using these experimental data, surface strain versus number of cycles to failure curves have been established. In particular, this work has assessed the behaviour of GLARE in bending and has highlighted the importance of the lay-up sequence for the “fibre bridging effect” on crack propagation to be effective.  相似文献   


10.
Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.  相似文献   

11.
The static failure behaviour of the fibre-metal laminate GLARE is examined using 3D finite element simulations. The configuration analysed is a centre-cracked tensile specimen composed of two aluminium layers sandwiching a cross-plied, fibre-epoxy layer. The crack and delamination growths are simulated by means of interface elements equipped with a mixed-mode damage model. The mode-mixity is derived from an energy criterion typically used in linear elastic fracture mechanics studies. The damage kinetic law is rate-dependent, in order to simulate rate effects during interfacial delamination and to avoid numerical convergence problems due to crack bifurcations. The numerical implementation of the interface damage model is based on a backward Euler approach. In the boundary value problem studied, the failure responses of GLARE specimens containing elastic aluminium layers and elasto-plastic aluminium layers are compared. The development of plastic deformations in the aluminium layers stabilizes the effective failure response, and increases the residual strength of the laminate. For a ‘quasi-brittle’ GLARE specimen with elastic aluminium layers, the residual strength is governed by the toughness for interfacial delamination, and is in close correspondence with the residual strength obtained from a closed-form expression derived from energy considerations. Conversely, for a ‘ductile’ GLARE specimen with elasto-plastic aluminium layers, the residual strength is also determined by the relation between the fracture strength and the yield strength of the aluminium. The amount of constraint by the horizontal displacements at the vertical specimen edges has a moderate to small influence on the residual strength. Furthermore, the ultimate laminate strength is lower for a larger initial crack length, and shows to be in good correspondence with experimental values.  相似文献   

12.
Fiber Metal Laminates are a new class of advanced aerospace materials. They consist of thin metallic sheets bonded together with fiber reinforced adhesive matrices. Their most outstanding characteristic is exceptional fatigue resistance, which stems from the crack bridging effect of the fibers in the prepreg layers. Because of the many advantages they offer, such as higher strengths and lower densities than conventional aluminum and better machinability and impact resistance than thermoset composites, fiber metal laminates are being considered for a number of primary aircraft applications, including lower wing and pressurized fuselage skin panels. This paper presents a survey of published literature on the subject of fiber metal laminates, tracing their advancement over the past decade and a half, from bonded aluminum sheets to the commercially manufactured forms of ARALL and GLARE.  相似文献   

13.
The damage tolerance of an aluminium roll-bonded laminate (ALH19) and a glass fibre reinforced laminate (GLARE) (both based on Al 2024-T3) has been studied. The composite laminates have been tested under 3-point bend and shear tests on the interfaces to analyze their fracture behaviour. During the bend tests different fracture mechanisms were activated for both laminates, which depend on the constituent materials and their interfaces. The high intrinsic toughness of the pure Al 1050 layers present in the aluminium roll-bonded laminate (ALH19), together with extrinsic toughening mechanisms such as crack bridging and interface delamination were responsible for the enhanced toughness of this composite laminate. On the other hand, crack deflection by debonding between the glass fibres and the plastic resin in GLARE was the main extrinsic toughening mechanism present in this composite laminate.  相似文献   

14.
Traditional machine countersinking practices create a knife‐edge condition in one or more of the outer aluminium layers in riveted GLARE joints. Press countersinking (dimpling) provides an alternative method of countersinking that prevents the formation of a knife‐edge; however, its application and potential benefits to fatigue performance in GLARE are not known. This paper investigates the dimple‐forming process and its application to GLARE, and the resulting benefits in fatigue crack‐initiation life in unfilled rivet holes. Initial results showed that the limited formability of GLARE complicates the dimpling process, but that dimpling shows promise as a method for increasing the crack‐initiation life of riveted GLARE joints.  相似文献   

15.
The fatigue crack growth behaviour of hybrid S2‐glass reinforced aluminium laminates (Glare) with multiple open holes was investigated experimentally and analytically. It was observed that the presence of multiple‐site fatigue damage would increase crack growth rates in the metal layers as two propagating cracks converged. An analytical crack growth model was established for predicting crack growth rates based on empirical Paris equation. The effective stress intensity factor at crack tips is a function of mode I far‐field stress intensity factor, crack opening stress intensity factor and effective non‐dimensional stress intensity factor that incorporated the crack‐bridging effect in fibre metal laminates. The predicted results under different applied stress can capture the trend of averaged crack growth rates in experiments, although deviation exists in the predictions.  相似文献   

16.
基于增量塑性损伤理论与纤维增强金属层板疲劳裂纹扩展唯象方法, 推导出在拉-压循环加载下, 纤维增强金属层板疲劳裂纹扩展速率预测模型。并通过玻璃纤维增强铝合金层板在应力比R=-1,-2的疲劳裂纹扩展实验对预测模型进行验证。结果表明, 纤维增强铝合金层板疲劳裂纹扩展的压载荷效应分为两种情况: 在有效循环应力比RC>0时, 表现为压载荷对铝合金层所承受残余拉应力的抵消作用; 当RC<0时, 表现为压载荷抵消残余拉应力后, 对纤维增强铝合金层板金属层的塑性损伤, 对疲劳裂纹扩展存在促进作用。纤维铝合金层板疲劳裂纹扩展的压载荷效应不可忽略, 本文中得出的在拉-压循环加载下疲劳裂纹扩展速率预测模型与实验结果符合较好。  相似文献   

17.
Numerical simulations based on finite element modelling are increasingly being developed to accurately evaluate the tensile properties of GLARE (GLAss fibre REinforced aluminium laminates). In this study, nonlinear tensile behaviour of GLARE Fibre Metal Laminates (FML) under in-plane loading conditions has been investigated. An appropriate finite element modelling approach has been developed to predict the stress–strain response and deformation behaviour of GLARE laminates using the ANSYS finite element package. The finite element model supports orthotropic material properties for glass/epoxy layer(s) and isotropic properties with the elastic–plastic behaviour for the aluminium layers. The adhesion between adjacent layers has been also properly simulated using cohesive zone modelling. An acceptable agreement was observed between the model predictions and experimental results available in the literature. The proposed model can be used to analyse GLARE laminates in structural applications such as mechanically fastened joints under different mechanical loading conditions.  相似文献   

18.
Fiber metal laminates are an advanced hybrid materials system being evaluated as a damage tolerance and light weight solution for future aircraft primary structures. This paper investigates the impact properties and damage tolerance of glass fiber reinforced aluminum laminates with cross-ply glass prepreg layers. A systematic low velocity impact testing program based on instrumented drop weight was conducted, and the characteristic impact energies, the damage area, and the permanent deflection of laminates are used to evaluate the impact performance and damage resistance. The post-impact residual tensile strength under various damage states ranging from the plastic dent, barely visible impact damage (BVID), clearly visible impact damage (CVID) up to the complete perforation was also measured and compared. Additionally, the post-impact fatigue behavior with different damage states was also explored. The results showed that both GLARE 4 and GLARE 5 laminates have better impact properties than those of 2024-T3 monolithic aluminum alloy. GLARE laminates had a longer service life than aluminum under fatigue loading after impact, and they did not show a sudden and catastrophic failure after the fatigue crack was initiated. The damage initiation, damage progression and failure modes under impact and fatigue loading were characterized and identified with microscopy, X-ray radiography, and by deply technique.  相似文献   

19.
Fibre-Metal Laminates (FML) such as GLARE are of interest as bonded crack retarders (BCR) to improve the fatigue performance of aircraft structures. The degradation of the performance of the crack retarder in service if subjected to damage is a critical factor in designing with this concept. Bonded assemblies of an aluminium alloy substrate reinforced with a GLARE strap were prepared, and were subjected to low velocity impact damage onto the GLARE, with impact energies ranging from 10 to 60 J. The thermal residual stresses developed during the bonding process of the GLARE to the aluminium were determined using neutron diffraction, and the change in the thermal residual stresses owing to impact damage onto the GLARE was evaluated. Pre- and post-impact fatigue performance of the BCR assemblies has been investigated. The results show that the BCR provides an improvement in fatigue life, but the reduction is impaired following impact damage. The results show that monitoring of impact damage will be critical in the damage tolerance assurance for aerospace structures containing bonded crack retarders.  相似文献   

20.
In this paper, an application of the Extended Finite Element Method (XFEM) for simulation of delamination in fibre metal laminates is presented. The study consider a double cantilever beam made of fibre metal laminate in which crack opening in mode I and crack propagation were studied. Comparison with the solution by standard Finite Element Method (FEM) as well as with experimental tests is provided. To the authors’ knowledge, this is the first time that XFEM is used in the fracture analysis of fibre metal laminates such as GLARE. The results indicated that XFEM could be a promising technique for the failure analysis of composite structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号