首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
随着石油能源渐趋匮乏,生物质高温裂解制备生物质油备受关注。而生物质油中氧含量高达40%,这将影响生物质油的稳定性、极性、热值、粘度和酸性等,应必须对其进行加氢脱氧精制处理。文中介绍了裂解生物质油的组成分布和特点,阐述了裂解生物质油加氢脱氧精制的反应过程和影响因素。  相似文献   

2.
生物质油具有含水量高、含氧量高、热值低、黏度大、热不稳定和化学不稳定等特性,在一定程度上影响了其应用,通过精制可改善其品质,拓展其应用领域。本文综述了生物质油的特性以及生物质油改性精制技术的研究进展,包括乳化、催化裂解、催化酯化以及加氢脱氧技术,并提出生物质油的应用领域及改性精制方向。  相似文献   

3.
生物质是唯一可以转化为液体燃料的、对环境友好的、清洁的可再生资源。通过高压液化或热裂解方法可将生物质制备成类似石油的黏稠状物质-生物油。生物油的高含氧量、低热值和化学不稳定等特性在一定程度上影响了其广泛应用,因此必须对生物油进行精制,以改善生物油的品质。从催化加氢、催化裂解、催化酯化、烯烃改性等方面阐述了生物油的精制技术及其研究进展。  相似文献   

4.
生物质油改性方法研究进展   总被引:2,自引:0,他引:2  
生物质快速裂解液体产物生物油(简称生物质油),具有水含量高、氧含量高、热值低、粘度大、热不稳定和化学不稳定等特性,在一定程度上影响了其广泛应用,因此必须通过精制改善其品质.按生物质快速裂解的反应过程,将提高生物质油品质的方法归纳为三类:第一类(反应前),快速裂解反应前,原料脱水和脱碱金属处理;第二类(反应中),快速裂解反应过程中,生物质油蒸汽不经冷凝直接改质;第三类(反应后),快速裂解反应完成后,采用对收集到的生物质油催化加氢、催化裂解、催化酯化、乳化、添加溶剂或添加抗氧化剂等方法进行改质.  相似文献   

5.
生物质液化及提质改性研究进展   总被引:1,自引:0,他引:1  
综述了近年来国内外生物质热化学转化技术的研究状况。介绍了生物质液化技术现状及生物质油精制提炼方法,包括苯酚液化、多元醇液化、弗托合成、催化加氢、催化裂解、催化酯化等。指出了现存问题和未来发展方向。  相似文献   

6.
介绍了生物质焦油改性提质制取燃料油的研究进展,对催化裂解、乳化调和、加氢脱氧、水蒸气重整和超临界流体提质等常见的生物油改性提质技术进行了总结。基于生物质焦油和煤焦油的异同点,提出将两者混合在超临界汽油条件下加氢裂解,制高品位燃料油的思路。通过生物质焦油改性提质,将其与煤焦油共同深加工或加氢转化,在解决生物质焦油加工工艺的同时,一定程度上可以使煤焦油的加工转化变得绿色环保。  相似文献   

7.
生物质是唯一能转化为液体燃料的可再生能源,生物质液化制取液体燃料及化学物品是生物质利用的主要发展方向。生物质液化主要包括裂解和高压液化两类。本文主要介绍了生物质纤维素裂解制备生物质裂解油的工艺、裂解反应器以及裂解油精制等。最后就我国目前的技术,提出了生物质制备裂解油的研究和发展趋势。  相似文献   

8.
Co对非晶态催化剂Ni-Mo-B加氢脱氧性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
以NaBH4作为还原剂,采用化学还原法制备出Ni-Mo-B或含助剂Co的Ni-Mo-B非晶态催化剂,用BET、SEM、XRD、XPS和DSC对催化剂进行表征分析,以苯酚为模型化合物研究其加氢脱氧性能。结果表明,所制备的催化剂为非晶态结构,助剂Co的加入,使催化剂粒径变小,促进Ni和B之间的电子转移,提高热稳定性。在苯酚的加氢脱氧活性研究中,加入助剂Co后,Ni-Mo-B显示出高加氢脱氧活性。在523 K、氢压4.0 MPa时,苯酚转化率达98%,加氢脱氧选择性达93%,产物中芳烃含量仅为2.92%,低于欧洲生物质油精制标准(14%)。随着温度的升高,加氢脱氧选择性进一步提高,但是在高温下,催化剂的非晶态结构不稳定,表现为转化率的下降和中间产物含量的增加。  相似文献   

9.
针对粗生物油高黏度,高腐蚀性,高含水量,高含氧量等缺点,必须经过精制才能作为潜在的液体燃料。因此综述了生物油催化加氢、催化酯化、催化裂解3种精制工艺的基本原理,精制工艺和近期的发展方向,特别是对催化加氢和酯化工艺近期的发展进行阐述。  相似文献   

10.
练彩霞  李凝  蒋武  马浩  彭瀚 《化工进展》2020,39(z1):153-162
对近年来生物质油催化加氢脱氧催化剂的制备、催化性能和反应机理的研究进展进行了整理总结。重点对贵金属催化剂、过渡金属催化剂和硫、氮、碳、磷等金属化合物催化剂的制备方法、催化性能和作用机理进行了概述,并分析了加氢脱氧催化剂的失活原因,同时提出生物质油加氢脱氧反应催化剂的未来发展方向:三维有序大孔(3DOM)钙钛矿氧化物的应用可能在提高催化剂的催化性能有作用。  相似文献   

11.
生物油加氢脱氧研究进展   总被引:3,自引:0,他引:3  
生物油是潜在的可再生能源,但由于含氧量高、低热值、化学性能不稳定和耐腐蚀性差等缺陷,影响其广泛应用,需进一步进行加氢脱氧处理。综述了近年来对生物油的模型化合物及实际油品的催化加氢脱氧的研究进展。  相似文献   

12.
分析了不同原料制备的生物油含氧化合物的组成差异,综述了生物油中典型含氧化合物(酚类化合物、呋喃类化合物、醚类化合物、酸类和酯类化合物)的加氢脱氧机理,重点介绍了含氧化合物加氢脱氧动力学数据及反应路径;同时,还对生物油加氢精制过程进行了描述,主要论述了生物油加氢精制过程的机制以及O、S、N等杂原子在不同催化剂下的脱除活性;最后指出生物油加氢精制面临的问题是人们对其反应机理了解不够深入,而模型化合物加氢脱氧无法真实反映生物油的反应过程,今后应重点研究不同类型含氧化合物的相互作用和真实生物油的反应机理。  相似文献   

13.
This paper contributes to the understanding of liquid phase pyrolysis (LPP) oil upgrading. The subject of discussion is hydrodeoxygenation (HDO). A three-stage hydrotreatment of liquid phase pyrolysis oil is described. It was found that during the initial heating stage conditions no HDO oil was produced. The HDO oil was formed during the main heating stage. During the initial heating stage, the oxygen content and the average molecular weight remained relatively constant. In the main heating stage the oxygen content decreased from 40 wt.% to 24 wt.% and the average molecular weight also decreases from 630 to 570 g/mol. Finally in the isothermal stage HDO oil was formed, indicated by a drop in oxygen content.  相似文献   

14.
Owing to the increasing interest in alternative energy, there is a focus on bio-oil production from biomass because it is an abundant and renewable energy source. Among the various kinds of biomass conversion technologies, pyrolysis has been investigated widely to produce bio-oil. However, the direct use of bio-oil is difficult because of its poor quality due to the large amounts of oxygen-containing compounds, such as acids, ketones, and esters. Therefore, an additional suitable upgrading process for bio-oil is required. Hydrodeoxygenation (HDO) is considered effective for the deoxygenation of bio-oil. This paper reviews the recent progress in the catalytic HDO of bio-oil. In addition, the effects of the solvent and catalyst applied to the HDO of bio-oil are reviewed intensively together with a discussion of the deactivation behavior of the catalyst during HDO.  相似文献   

15.
过渡金属碳化物由母体金属化合物经渗碳反应而形成,具有多变的结构组成和类贵金属的电子性质,是一类具有广泛应用前景的廉价催化材料,在催化加氢、加氢脱氧(hydrodeoxygenation,简写为HDO)和氢解等诸多重要催化反应中表现出优异的性能。近年来,对过渡金属碳化物的研究及其催化应用取得显著进展,但由于其固有的复杂性如相组成、表面缺陷与物种等导致构效关联等科学问题尚不清晰,仍有待进一步研究。本文综述了近年来过渡金属碳化物在生物质热解油中代表性含氧化合物HDO制备燃料和高附加值化学品中的研究进展,在分析了代表性含氧化合物反应路径的基础上,重点介绍了过渡金属碳化物的设计与合成策略及其结构与HDO催化性能关联,并展望了过渡金属碳化物作为生物质基含氧化合物HDO催化材料的研发方向与发展前景。  相似文献   

16.
Second generation biofuels are produced in the bioliq® process at the Karlsruhe Institute of Technology via gasification of pyrolysis oil and synthesis of gasoline from the emerging synthesis gas. An alternative strategy is the direct upgrading of the pyrolysis oil by hydrodeoxygenation (HDO). The present study reports on the HDO of guaiacol as one of the phenolic compounds strongly abundant in such mixtures. Special focus was laid on the solvent influence using Pt‐based catalysts. Higher HDO ability was seen using nonpolar solvents and acidic supports. Characterization of the catalysts before and after the test showed that the solvent did not only influence the reactivity, but also the catalyst stability.  相似文献   

17.
张亮  吴曼  杨雅  张秀丽  徐秀峰  郭庆杰 《化工学报》2014,65(8):3004-3011
在小型固定床反应器中以Ni-Cu/ZrO2为催化剂,对小球藻热解油进行催化加氢脱氧,以改善生物油性能。利用XRD、H2-TPR、TG、NH3-TPD等技术对催化剂进行了结构表征。结果表明,Cu的加入有效促进了Ni-Cu/ZrO2催化剂活性相的表面分散,提高了该催化剂对小球藻热解油加氢脱氧反应的催化活性。在2 MPa、350 ℃反应条件下,随Cu/Ni的增大,Ni-Cu/ZrO2的催化活性先升高后降低,Cu/Ni质量比为0.40时的催化性能最好,连续运行3 h后所得精制生物油脱氧率达82.0%。Ni-Cu/ZrO2催化剂在反应过程中,表面结焦少,活性粒子及催化剂性能稳定,连续运行24 h后所得精制生物油脱氧率依然维持在77.0%以上。小球藻热解油经催化加氢脱氧所得的精制生物油,低位热值由31.5 MJ·kg-1提高至35.0 MJ·kg-1,40℃运动黏度由20.5 mm2·s-1降至9.5 mm2·s-1,且油品中水分更易于脱除。精制生物油中高级脂肪酸的含量减少,油品稳定性大幅提高。  相似文献   

18.
NiFe bimetallic catalyst shows an excellent activity and selectivity for the hydrodeoxygenation (HDO) of three typical model compounds of bio-oil. The conversion of furfuryl alcohol, benzene alcohol and ethyl oenanthate is 100, 95.48 and 97.89% at 400 °C and the yield to 2-methylfuran, toluene and heptane is 98.85, 93.49 and 96.11% at 0.1 ml/min flow speed and atmospheric pressure. It indicates that the major reaction pathway is the cleavage of C–O rather than C–C. After the catalytic HDO of bio-oil over NiFe/Al2O3 catalyst, the heating value changes from 37.8 to 43.9 MJ/kg, the pH changes from 6.65 to 7.50.  相似文献   

19.
Biomass can be used to produce biofuels, such as bio-oil and bio-diesel, by a range of methods. Biofuels, however, have a high oxygen content, which deteriorates the biofuel quality. Therefore, the upgrading of biofuels via catalytic deoxygenation is necessary. This paper reviews the recent advances of the catalytic deoxygenation of biomass. Catalytic cracking of bio-oil is a promising method to enhance the quality of bio-oil. Microporous zeolites, mesoporous zeolites and metal oxide catalysts have been investigated for the catalytic cracking of biomass. On the other hand, it is important to develop methods to reduce catalyst coking and enhance the lifetime of the catalyst. In addition, an examination of the effects of the process parameters is very important for optimizing the composition of the product. The catalytic upgrading of triglycerides to hydrocarbon-based fuels is carried out in two ways. Hydrodeoxygenation (HDO) was introduced to remove oxygen atoms from the triglycerides in the form of H2O by hydrogenation. HDO produced hydrogenated biodiesel because the catalysts and process were based mainly on well-established technology, hydrodesulfurization. Many refineries and companies have attempted to develop and commercialize the HDO process. On the other hand, the consumption of huge amounts of hydrogen is a major problem hindering the wide-spread use of HDO process. To solve the hydrogen problem, deoxygenation with the minimum use of hydrogen was recently proposed. Precious metal-based catalysts showed reasonable activity for the deoxygenation of reagent-grade fatty acids with a batch-mode reaction. On the other hand, the continuous production of hydrocarbon in a fixed-bed showed that the initial catalytic activity decreases gradually due to coke deposition. The catalytic activity for deoxygenation needs to be maintained to achieve the widespread production of hydrocarbon-based fuels with a biological origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号