首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this paper, recent algorithms are suggested to repair the issue of motif finding. The proposed algorithms are cuckoo search, modified cuckoo search and finally a hybrid of gravitational search and particle swarm optimization algorithm. Motif finding is the technique of handling expressive motifs successfully in huge DNA sequences. DNA motif finding is important because it acts as a significant function in understanding the approach of gene regulation. Recent results of existing motifs finding programs display low accuracy and can not be used to find motifs in different types of datasets. Practical tests are implemented first on synthetic datasets and then on benchmark real datasets that are based on nature-inspired algorithms. The results revealed that the hybridization of gravitational search algorithm and particle swarm algorithms provides higher precision and recall values and provides average enhancement of F-score up to 0.24, compared to other existing algorithms and tools, and also that cuckoo search and modified cuckoo search have been able to successfully locate motifs in DNA sequences.

  相似文献   

2.

The metaheuristic optimization algorithms are relatively new optimization algorithms introduced to solve optimization problems in recent years. For example, the firefly algorithm (FA) is one of the metaheuristic algorithms inspired by the fireflies' flashing behavior. However, its weakness in terms of exploration and early convergence has been pointed out. In this paper, two approaches were proposed to improve the FA. In the first proposed approach, a new improved opposition-based learning FA (IOFA) method was presented to accelerate the convergence and improve the FA's exploration capability. In the second proposed approach, a symbiotic organisms search (SOS) algorithm improved the exploration and exploitation of the first approach; two new parameters set these two goals, and the second approach was named IOFASOS. The purpose of the second method is that in the process of the SOS algorithm, the whole population is effective in the IOFA method to find solutions in the early stages of implementation, and with each iteration, fewer solutions are affected in the population. The experiments on 24 standard benchmark functions were conducted, and the first proposed approach showed a better performance in the small and medium dimensions and exhibited a relatively moderate performance in the higher dimensions. In contrast, the second proposed approach was better in increasing dimensions. In general, the empirical results showed that the two new approaches outperform other algorithms in most mathematical benchmarking functions. Thus, The IOFASOS model has more efficient solutions.

  相似文献   

3.

In machine learning, searching for the optimal feature subset from the original datasets is a very challenging and prominent task. The metaheuristic algorithms are used in finding out the relevant, important features, that enhance the classification accuracy and save the resource time. Most of the algorithms have shown excellent performance in solving feature selection problems. A recently developed metaheuristic algorithm, gaining-sharing knowledge-based optimization algorithm (GSK), is considered for finding out the optimal feature subset. GSK algorithm was proposed over continuous search space; therefore, a total of eight S-shaped and V-shaped transfer functions are employed to solve the problems into binary search space. Additionally, a population reduction scheme is also employed with the transfer functions to enhance the performance of proposed approaches. It explores the search space efficiently and deletes the worst solutions from the search space, due to the updation of population size in every iteration. The proposed approaches are tested over twenty-one benchmark datasets from UCI repository. The obtained results are compared with state-of-the-art metaheuristic algorithms including binary differential evolution algorithm, binary particle swarm optimization, binary bat algorithm, binary grey wolf optimizer, binary ant lion optimizer, binary dragonfly algorithm, binary salp swarm algorithm. Among eight transfer functions, V4 transfer function with population reduction on binary GSK algorithm outperforms other optimizers in terms of accuracy, fitness values and the minimal number of features. To investigate the results statistically, two non-parametric statistical tests are conducted that concludes the superiority of the proposed approach.

  相似文献   

4.

Balancing the exploration and exploitation in any nature-inspired optimization algorithm is an essential task, while solving the real-world global optimization problems. Therefore, the search agents of an algorithm always try to explore the unvisited domains of a search space in a balanced manner. The sine cosine algorithm (SCA) is a recent addition to the field of metaheuristics that finds the solution of an optimization problem using the behavior of sine and cosine functions. However, in some cases, the SCA skips the true solutions and trapped at sub-optimal solutions. These problems lead to the premature convergence, which is harmful in determining the global optima. Therefore, in order to alleviate the above-mentioned issues, the present study aims to establish a comparatively better synergy between exploration and exploitation in the SCA. In this direction, firstly, the exploration ability of the SCA is improved by integrating the social and cognitive component, and secondly, the balance between exploration and exploitation is maintained through the grey wolf optimizer (GWO). The proposed algorithm is named as SC-GWO. For the performance evaluation, a well-known set of benchmark problems and engineering test problems are taken. The dimension of benchmark test problems is varied from 30 to 100 to observe the robustness of the SC-GWO on scalability of problems. In the paper, the SC-GWO is also used to determine the optimal setting for overcurrent relays. The analysis of obtained numerical results and its comparison with other metaheuristic algorithms demonstrate the superior ability of the proposed SC-GWO.

  相似文献   

5.
In this paper, using a more general Lyapunov function, less conservative sum‐of‐squares (SOS) stability conditions for polynomial‐fuzzy‐model‐based tracking control systems are derived. In tracking control problems the objective is to drive the system states of a nonlinear plant to follow the system states of a given reference model. A state feedback polynomial fuzzy controller is employed to achieve this goal. The tracking control design is formulated as an SOS optimization problem. Here, unlike previous SOS‐based tracking control approaches, a full‐state‐dependent Lyapunov matrix is used, which reduces the conservatism of the stability criteria. Furthermore, the SOS conditions are derived to guarantee the system stability subject to a given H performance. The proposed method is applied to the pitch‐axis autopilot design problem of a high‐agile tail‐controlled pursuit and another numerical example to demonstrate the effectiveness and benefits of the proposed method.  相似文献   

6.
Zhan  Zhi-Hui  Shi  Lin  Tan  Kay Chen  Zhang  Jun 《Artificial Intelligence Review》2022,55(1):59-110

Complex continuous optimization problems widely exist nowadays due to the fast development of the economy and society. Moreover, the technologies like Internet of things, cloud computing, and big data also make optimization problems with more challenges including Many-dimensions, Many-changes, Many-optima, Many-constraints, and Many-costs. We term these as 5-M challenges that exist in large-scale optimization problems, dynamic optimization problems, multi-modal optimization problems, multi-objective optimization problems, many-objective optimization problems, constrained optimization problems, and expensive optimization problems in practical applications. The evolutionary computation (EC) algorithms are a kind of promising global optimization tools that have not only been widely applied for solving traditional optimization problems, but also have emerged booming research for solving the above-mentioned complex continuous optimization problems in recent years. In order to show how EC algorithms are promising and efficient in dealing with the 5-M complex challenges, this paper presents a comprehensive survey by proposing a novel taxonomy according to the function of the approaches, including reducing problem difficulty, increasing algorithm diversity, accelerating convergence speed, reducing running time, and extending application field. Moreover, some future research directions on using EC algorithms to solve complex continuous optimization problems are proposed and discussed. We believe that such a survey can draw attention, raise discussions, and inspire new ideas of EC research into complex continuous optimization problems and real-world applications.

  相似文献   

7.

Nature-inspired algorithms take inspiration from living things and imitate their behaviours to accomplish robust systems in engineering and computer science discipline. Symbiotic organisms search (SOS) algorithm is a recent metaheuristic algorithm inspired by symbiotic interaction between organisms in an ecosystem. Organisms develop symbiotic relationships such as mutualism, commensalism, and parasitism for their survival in ecosystem. SOS was introduced to solve continuous benchmark and engineering problems. The SOS has been shown to be robust and has faster convergence speed when compared with genetic algorithm, particle swarm optimization, differential evolution, and artificial bee colony which are the traditional metaheuristic algorithms. The interests of researchers in using SOS for handling optimization problems are increasing day by day, due to its successful application in solving optimization problems in science and engineering fields. Therefore, this paper presents a comprehensive survey of SOS advances and its applications, and this will be of benefit to the researchers engaged in the study of SOS algorithm.

  相似文献   

8.
针对一类含多面体不确定性的多项式系统,研究其局部稳定鲁棒镇定问题。基于多项式平方和(SOS)技术,将该类非线性控制问题转换为凸的SOS规划问题,并通过引入S-procedure技术,保证了所得结论在局部范围内是有效的。同时,结合参数依赖Lyapunov函数方法,给出了该类系统鲁棒性分析与鲁棒镇定控制问题的充分条件,并将其描述为可由SOS规划技术直接求解的状态依赖线性矩阵不等式约束集。最后,通过数值仿真验证了该方法的有效性。  相似文献   

9.

The bored pile foundations are gaining popularity in construction industry because of ease in construction, low noise and vibrations. The load-carrying capacity of bored pile foundations is dependent upon soil–structure interaction. This being a three-dimensional problem is further complicated due to large variations in soil properties. Also, modeling of soil is difficult because of its nonlinear and anisotropic nature. For such cases, the artificial neural network (ANN) and nature-inspired optimization techniques have been found to be highly suitable to attain acceptable levels of accuracy. In the present study, two ANNs have been trained for determination of unit skin friction and unit end bearing capacity from soil properties. The training data for ANNs have been obtained from finite element analysis of pile foundations for 4809 different soil types. A dataset of 50 field pile loading test results is used to check the performance of the developed artificial neural networks. To enhance the accuracy of the developed ANNs, two correlation factors have been determined by applying four popular nature-inspired optimization algorithms: particle swarm optimization (PSO), fire flies, cuckoo search and bacterial foraging. In order to rank these optimization algorithms, parametric and nonparametric statistical analysis has been carried out. The results of optimization algorithms have been compared to find the most suitable solution for this multi-dimensional problem which has a large number of nonlinear equality constraints. The effectiveness and suitability of the nature-inspired algorithms for the presented problem have been demonstrated by computing correlation coefficients with field pile loading test results and then with the total execution time taken by each algorithm. The results of comparison show that PSO is the best performer for such constrained problems.

  相似文献   

10.

Gravitational search algorithm is a nature-inspired algorithm based on the mathematical modelling of the Newton’s law of gravity and motion. In a decade, researchers have presented many variants of gravitational search algorithm by modifying its parameters to efficiently solve complex optimization problems. This paper conducts a comparative analysis among ten variants of gravitational search algorithm which modify three parameters, namely Kbest, velocity, and position. Experiments are conducted on two sets of benchmark categories, namely standard functions and CEC2015 functions, including problems belonging to different categories such as unimodal, multimodal, and unconstrained optimization functions. The performance comparison is evaluated and statistically validated in terms of mean fitness value and convergence graph. In experiments, IGSA has achieved better precision with balanced trade-off between exploration and exploitation. Moreover, triple negative breast cancer dataset has been considered to analysis the performance of GSA variants for the nuclei segmentation. The variants performance has been analysed in terms of both qualitative and quantitive with aggregated Jaccard index as performance measure. Experiments affirm that IGSA-based method has outperformed other methods.

  相似文献   

11.
A survey on metaheuristics for stochastic combinatorial optimization   总被引:2,自引:0,他引:2  
Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this field.
Leonora BianchiEmail:
  相似文献   

12.

In this paper, a new hybrid algorithm is introduced, combining two Harris Hawks Optimizer (HHO) and the Imperialist Competitive Algorithm (ICA) to achieve a better search strategy. HHO is a new population-based, nature-inspired optimization algorithm that mimics Harris Hawks cooperative behavior and chasing style in nature called surprise pounce HHO. It is a robust algorithm in exploitation, but has an unfavorable performance in exploring the search space, while ICA has a better performance in exploration; thus, combining these two algorithms produces an effective hybrid algorithm. The hybrid algorithm is called Imperialist Competitive Harris Hawks Optimization (ICHHO). The proposed hybrid algorithm's effectiveness is examined by comparing other nature-inspired techniques, 23 mathematical benchmark problems, and several well-known structural engineering problems. The results successfully indicate the proposed hybrid algorithm's competitive performance compared to HHO, ICA, and some other well-established algorithms.

  相似文献   

13.

The effectiveness of swarm intelligence has been proven to be at the heart of various optimization problems. In this study, a recently developed nature-inspired algorithm, specifically the firefly algorithm (FA), is integrated in the learning strategy of wavelet neural networks (WNNs). The FA, which systematically optimizes the initial location of the translation parameters for WNNs, has reduced the number of hidden nodes while simultaneously improved the generalization capability of WNNs significantly. The applicability of the proposed model was demonstrated through empirical simulations for function approximation study, with both synthetic and real-world data. Performance assessment demonstrated its enhancement over the K-means clustering and random initialization approaches, as well as to the other neural network models reported in the literature, whereby a noteworthy decrease in the approximation error was observed.

  相似文献   

14.
借鉴自然界群居生物的搜索行为模式,提出一种群体区域搜索算法。该算法在优化过程中逐步收缩个体搜索半径并进行适度随机调整,引入巡游追随机制,以一种简单而自然的方式有效地实现了算法广域探索能力与局部开发能力之间的平衡。算法结构简单、易实现,易与其他算法相结合。通过6个典型测试函数的实验结果表明,该算法全局优化能力强、收敛精度高、稳定性好、总体性能优,适用于复杂函数优化问题的处理。  相似文献   

15.

As an optimization paradigm, Salp Swarm Algorithm (SSA) outperforms various population-based optimizers in the perspective of the accuracy of obtained solutions and convergence rate. However, SSA gets stuck into sub-optimal solutions and degrades accuracy while solving the complex optimization problems. To relieve these shortcomings, a modified version of the SSA is proposed in the present work, which tries to establish a more stable equilibrium between the exploration and exploitation cores. This method utilizes two different strategies called opposition-based learning and levy-flight (LVF) search. The algorithm is named m-SSA, and its validation is performed on a well-known set of 23 classical benchmark problems. To observe the strength of the proposed method on the scalability of the test problems, the dimension of these problems is varied from 50 to 1000. Furthermore, the proposed m-SSA is also used to solve some real engineering optimization problems. The analysis of results through various statistical measures, convergence rate, and statistical analysis ensures the effectiveness of the proposed strategies integrated with the m-SSA. The comparison of the m-SSA with the conventional SSA, variants of SSA and some other state-of-the-art algorithms illustrate its enhanced search efficiency.

  相似文献   

16.

This paper investigates the design of concentric circular antenna arrays (CCAAs) with optimum side lobe level reduction using the Symbiotic Organisms Search (SOS) algorithm. Both thinned and full CCAAs are considered. SOS represents a rather new evolutionary algorithm for antenna array optimization. SOS is inspired by the symbiotic interaction strategies between different organisms in an ecosystem. SOS uses simple expressions to model the three common types of symbiotic relationships: mutualism, commensalism, and parasitism. These expressions are used to find the global minimum of the fitness function. Unlike other methods, SOS is free of tuning parameters, which makes it an attractive optimization method. The results obtained using SOS are compared to those obtained using several optimization methods, like Biogeography-Based Optimization (BBO), Teaching-Learning-Based Optimization (TLBO), and Evolutionary Programming (EP). It is shown that the SOS is a robust straightforward evolutionary algorithm that competes with other known methods.

  相似文献   

17.

In the current paper, we have developed two bio-inspired fuzzy clustering algorithms by incorporating the optimization techniques, namely differential evolution and particle swarm optimization. Both these clustering techniques can detect symmetrical-shaped clusters utilizing the established point symmetry-based distance measure. Both the proposed approaches are automatic in nature and can detect the number of clusters automatically from a given dataset. A symmetry-based cluster validity measure, F-Sym-index, is used as the objective function to be optimized in order to automatically determine the correct partitioning by both the approaches. The effectiveness of the proposed approaches is shown for automatically clustering some artificial and real-life datasets as well as for clustering some real-life gene expression datasets. The current paper presents a comparative analysis of some meta-heuristic-based clustering approaches, namely newly proposed two techniques and the already existing automatic genetic clustering techniques, VGAPS, GCUK, HNGA. The obtained results are compared with respect to some external cluster validity indices. Moreover, some statistical significance tests, as well as biological significance tests, are also conducted. Finally, results on gene expression datasets have been visualized by using some visualization tools, namely Eisen plot and cluster profile plot.

  相似文献   

18.

This paper presents symbiotic organisms search (SOS) algorithm to solve economic emission load dispatch (EELD) problem for thermal generators in power systems. The basic objective of the EELD is to minimize both minimum operating costs and emission levels, while satisfying the load demand and all equality–inequality constraints. In other research direction, this multi-objective problem is converted into single-objective function by using price penalty factor approach in order to solve it with SOS. The proposed algorithm has been implemented on various test cases, with different constraints and various cost curve nature. In order to see the effectiveness of the proposed algorithm, its results are compared to those reported in the recent literature. The results of the algorithms indicate that SOS gives good results in both systems and very competitive with the state of the art for the solution of the EELD problems.

  相似文献   

19.

Dynamic optimization problems have emerged as an important field of research during the last two decades, since many real-world optimization problems are changing over time. These problems need fast and accurate algorithms, not only to locate the optimum in a limited amount of time but also track its trajectories as close as possible. Although lots of research efforts have been given in developing dynamic benchmark generator/problems and proposing algorithms to solve these problems, the role of numerical performance measurements have been barely considered in the literature. Several performance criteria have been already proposed to evaluate the performance of algorithms. However, because they only take confined aspects of the algorithms into consideration, they do not provide enough information about the effectiveness of each algorithm. In this paper, at first we review the existing performance measures and then we present a set of two measures as a framework for comparing algorithms in dynamic environments, named fitness adaptation speed and alphaaccuracy. A comparative study is then conducted among different state-of-the-art algorithms on moving peaks benchmark via proposed metrics, along with several other performance measures, to demonstrate the relative advantages of the introduced measures. We hope that the collected knowledge in this paper opens a door toward a more comprehensive comparison among algorithms for dynamic optimization problems.

  相似文献   

20.

To enhance the performance and dynamics of a direct current (DC) motor drive, this paper proposes a new alternative based on recently introduced powerful symbiotic organisms search (SOS) algorithm for tuning proportional integral parameters. While imitating the symbiotic behavior that is seen among organisms in an ecosystem, SOS has important features such that it does not require tuning parameters, and its implementation is very easy with efficient three phases. After obtaining the optimized values of K p  − K i pair within the accurately prepared simulation software, they are used in real time. By managing the DC motor speed-controlled system with DSP of TMS320F28335, several simulations and experimental results confirming the performance of our proposal are presented along with comparisons against those of particle swarm optimization (PSO), genetic algorithm (GA), and Ziegler–Nichols (Z–N) tuning method. Results explicitly show that SOS is the pioneer in yielding better tracking performance and load disturbance rejection capability of the concerned drive system, which is followed by PSO, GA, and Z–N method, respectively. This has been achieved due to the fact that the gains obtained by SOS are more performant than those obtained by other applied methods.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号