首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Proper estimation of rock strength is a critical task for evaluation and design of some geotechnical applications such as tunneling and excavation. Uniaxial compressive strength (UCS) test can be measured directly in the laboratory; nevertheless, the direct UCS determination is time-consuming and expensive. In this study, feasibility of gene expression programming (GEP) model in indirect determination of UCS values of sandstone rock samples is examined. In this regard, several laboratory tests including Brazilian test, density test, slake durability test and UCS test were conducted on 47 samples of sandstone which were collected from the Dengkil, Malaysia. Considering multiple inputs, several GEP models were constructed to estimate UCS of the rock and finally, the best GEP model was selected. In order to indicate capability of the proposed GEP model, linear multiple regression (LMR) was also performed. It was found that the GEP model is superior to LMR one in terms of applied performance indices. Based on coefficient of determination (R 2) of testing datasets, by proposing GEP model, it can be improved from 0.930 (which was obtained by LMR model) to 0.965. As a result, it is concluded that the proposed models in this study, could be utilized to estimate UCS of similar rock type in practice.

  相似文献   

2.
In this study, the efficiency of neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the transfer length of prestressing strands in prestressed concrete beams was investigated. Many models suggested for the transfer length of prestressing strands usually consider one or two parameters and do not provide consistent accurate prediction. The alternative approaches such as GEP and ANFIS have been recently used to model spatially complex systems. The transfer length data from various researches have been collected to use in training and testing ANFIS and GEP models. Six basic parameters affecting the transfer length of strands were selected as input parameters. These parameters are ratio of strand cross-sectional area to concrete area, surface condition of strands, diameter of strands, percentage of debonded strands, effective prestress and concrete strength at the time of measurement. Results showed that the ANFIS and GEP models are capable of accurately predicting the transfer lengths used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.  相似文献   

3.
An accurate prediction of pile capacity under axial loads is necessary for the design. This paper presents the development of a new model to predict axial capacity of pile foundations driven into cohesive soils. Gene expression programming technique (GEP) has been utilized for this purpose. The data used for development of the GEP model is collected from the literature and comprise a series of in-situ driven piles load tests as well as cone penetration test (CPT) results. The data are divided into two subsets: training set for model calibration and independent validation set for model verification. Predictions from the GEP model are compared with experimental data and with predictions of number of currently adopted CPT-based methods. The results have demonstrated that the GEP model performs well with coefficient of correlation, mean and probability density at 50% equivalent to 0.94, 0.96 and 1.01, respectively, indicating that the proposed model predicts pile capacity accurately.  相似文献   

4.
Splitting tensile strength is one of the important mechanical properties of concrete that is used in structural design. In this paper, it is aimed to propose formulation for predicting cylinder splitting tensile strength of concrete by using gene expression programming (GEP). The database used for training, testing, and validation sets of the GEP models is obtained from the literature. The GEP formulations are developed for prediction of splitting tensile strength of concrete as a function of water-binder ratio, age of specimen, and 100-mm cube compressive strength. The training and testing sets of the GEP models are randomly selected from the complete experimental data. The GEP formulations are also validated with additional experimental data except from the data used in training and testing sets of the GEP models. GEP formulations’ results are compared with experimental results. Results of this study revealed that GEP formulations exhibited better performance to predict the splitting tensile strength of concrete.  相似文献   

5.

The type of materials used in designing and constructing structures significantly affects the way the structures behave. The performance of concrete and steel, which are used as a composite in columns, has a considerable effect upon the structure behavior under different loading conditions. In this paper, several advanced methods were applied and developed to predict the bearing capacity of the concrete-filled steel tube (CFST) columns in two phases of prediction and optimization. In the prediction phase, bearing capacity values of CFST columns were estimated through developing gene expression programming (GEP)-based tree equation; then, the results were compared with the results obtained from a hybrid model of artificial neural network (ANN) and particle swarm optimization (PSO). In the modeling process, the outer diameter, concrete compressive strength, tensile yield stress of the steel column, thickness of steel cover, and the length of the samples were considered as the model inputs. After a series of analyses, the best predictive models were selected based on the coefficient of determination (R2) results. R2 values of 0.928 and 0.939 for training and testing datasets of the selected GEP-based tree equation, respectively, demonstrated that GEP was able to provide higher performance capacity compared to PSO–ANN model with R2 values of 0.910 and 0.904 and ANN with R2 values of 0.895 and 0.881. In the optimization phase, whale optimization algorithm (WOA), which has not yet been applied in structural engineering, was selected and developed to maximize the results of the bearing capacity. Based on the obtained results, WOA, by increasing bearing capacity to 23436.63 kN, was able to maximize significantly the bearing capacity of CFST columns.

  相似文献   

6.

This study aimed to optimize Adaptive Neuro-Fuzzy Inferences System (ANFIS) with two optimization algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for the calculation friction capacity ratio (α) in driven shafts. Various studies are shown that both ANFIS are valuable methods for prediction of engineering problems. However, optimizing ANFIS with GA and PSO has not been used in the area of pile engineering. The training data set was collected from available full-scale results of the driven piles. The input parameters used in this study were pile diameter (m), pile length (m), relative density (Id), embedment ratio (L/D), both of the pile end resistance (qc) and base resistance at relatively 10% base settlement (qb0.1) from CPT result, whereas the output was α. A learning fuzzy-based algorithm was used to train the ANFIS model in the MATLAB software. The system was optimized by changing the number of clusters in the FIS and then the output was used for the GA and PSO optimization algorithm. The prediction was compared with the real-monitoring field data. As a result, good agreement was attained representing reliability of all proposed models. The estimated results for the collected database were assessed based on several statistical indices such as R2, RMSE, and VAF. According to R2, RMSE, and VAF, values of (0.9439, 0.0123 and 99.91), (0.9872, 0.0117 and 99.99), and (0.9605, 0.0119 and 99.97) were obtained for testing data sets of the optimized ANFIS, GA–ANFIS, and PSO–ANFIS predictive models, respectively. This indicates higher reliability of the optimized GA–ANFIS model in estimating α ratio in driven shafts.

  相似文献   

7.
Uniaxial compressive strength (UCS) is one of the most important parameters for investigation of rock behaviour in civil and mining engineering applications. The direct method to determine UCS is time consuming and expensive in the laboratory. Therefore, indirect estimation of UCS values using other rock index tests is of interest. In this study, extensive laboratory tests including density test, Schmidt hammer test, point load strength test and UCS test were conducted on 106 samples of sandstone which were taken from three sites in Malaysia. Based on the laboratory results, some new equations with acceptable reliability were developed to predict UCS using simple regression analysis. Additionally, results of simple regression analysis show that there is a need to propose UCS predictive models by multiple inputs. Therefore, considering the same laboratory results, multiple regression (MR) and regression tree (RT) models were also performed. To evaluate performance prediction of the developed models, several performance indices, i.e. coefficient of determination (R 2), variance account for and root mean squared error were examined. The results indicated that the RT model can predict UCS with higher performance capacity compared to MR technique. R 2 values of 0.857 and 0.801 for training and testing datasets, respectively, suggests the superiority of the RT model in predicting UCS, while these values are obtained as 0.754 and 0.770 for MR model, respectively.  相似文献   

8.

Prediction of pile-bearing capacity developing artificial intelligence models has been done over the last decade. Such predictive tools can assist geotechnical engineers to easily determine the ultimate pile bearing capacity instead of conducting any difficult field tests. The main aim of this study is to predict the bearing capacity of pile developing several smart models, i.e., neuro-genetic, neuro-imperialism, genetic programing (GP) and artificial neural network (ANN). For this purpose, a number of concrete pile characteristics and its dynamic load test specifications were investigated to select pile cross-sectional area, pile length, pile set, hammer weight and drop height as five input variables which have the most impacts on pile bearing capacity as the single output variable. It should be noted that all the aforementioned parameters were measured by conducting a series of pile driving analyzer tests on precast concrete piles located in Pekanbaru, Indonesia. The recorded data were used to establish a database of 50 test cases. With regard to data modelling, many smart models of neuro-genetic, neuro-imperialism, GP and ANN were developed and then evaluated based on the three most common statistical indices, i.e., root mean squared error (RMSE), coefficient determination (R2) and variance account for (VAF). Based on the simulation results and the computed indices’ values, it is observed that the proposed GP model with training and test RMSE values of 0.041 and 0.040, respectively, performs noticeably better than the proposed neuro-genetic model with RMSE values of 0.042 and 0.040, neuro-imperialism model with RMSE values of 0.045 and 0.059, and ANN model with RMSE values of 0.116 and 0.108 for training and test sets, respectively. Therefore, this GP-based model can provide a new applicable equation to effectively predict the ultimate pile bearing capacity.

  相似文献   

9.
The abrasion resistance of chenille yarn is crucially important in particular because the effect sought is always that of the velvety feel of the pile. Thus, various methods have been developed to predict chenille yarn and fabric abrasion properties. Statistical models yielded reasonably good abrasion resistance predictions. However, there is a lack of study that encompasses the scope for predicting the chenille yarn abrasion resistance with artificial neural network (ANN) models. This paper presents an intelligent modeling methodology based on ANNs for predicting the abrasion resistance of chenille yarns and fabrics. Constituent chenille yarn parameters like yarn count, pile length, twist level and pile yarn material type are used as inputs to the model. The intelligent method is based on a special kind of ANN, which uses radial basis functions as activation functions. The predictive power of the ANN model is compared with different statistical models. It is shown that the intelligent model improves prediction performance with respect to statistical models.  相似文献   

10.
The addition of steel fibers into concrete improves the postcracking tensile strength of hardened concrete and hence significantly enhances the shear strength of reinforced concrete reinforced concrete beams. However, developing an accurate model for predicting the shear strength of steel fiber reinforced concrete (SFRC) beams is a challenging task as there are several parameters such as the concrete compressive strength, shear span to depth ratio, reinforcement ratio and fiber content that affect the ultimate shear resistance of FRC beams. This paper investigates the feasibility of using gene expression programming (GEP) to create an empirical model for the ultimate shear strength of SFRC beams without stirrups. The model produced by GEP is constructed directly from a set of experimental results available in the literature. The results of training, testing and validation sets of the model are compared with experimental results. All of the results show that GEP model is fairly promising approach for the prediction of shear strength of SFRC beams. The performance of the GEP model is also compared with different proposed formulas available in the literature. It was found that the GEP model provides the most accurate results in calculating the shear strength of SFRC beams among existing shear strength formulas. Parametric studies are also carried out to evaluate the ability of the proposed GEP model to quantitatively account for the effects of shear design parameters on the shear strength of SFRC beams.  相似文献   

11.
The process of local scour around bridge piers is fundamentally complex due to the three-dimensional flow patterns interacting with bed materials. For geotechnical and economical reasons, multiple pile bridge piers have become more and more popular in bridge design. Although many studies have been carried out to develop relationships for the maximum scour depth at pile groups under clear-water scour condition, existing methods do not always produce reasonable results for scour predictions. It is partly due to the complexity of the phenomenon involved and partly because of limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and presents an alternative to the regression in the form of artificial neural networks, ANNs, and adaptive neuro-fuzzy inference system, ANFIS. Two ANNs model, feed forward back propagation, FFBP, and radial basis function, RBF, were utilized to predict the depth of the scour hole. Two combinations of input data were used for network training; the first input combination contains six-dimensional variables, which are flow depth, mean velocity, critical flow velocity, grain mean diameter, pile diameter, distance between the piles (gap), besides the number of piles normal to the flow and the number of piles in-line with flow, while the second combination contains seven non-dimensional parameters which is a composition of dimensional parameters. The training and testing experimental data on local scour at pile groups are selected from several precious references. Networks’ results have been compared with the results of empirical methods that are already considered in this study. Numerical tests indicate that FFBP-NN model provides a better prediction than the other models. Also a sensitivity analysis showed that the pile diameter in dimensional variables and ratio of pile spacing to pile diameter in non-dimensional parameters are the most significant parameters on scour depth.  相似文献   

12.
Ground vibration (GV) is a blasting consequence and is an important parameter to control in mining and civil projects. Previous GV predictor models have mainly been developed considering two factors; charge per delay and distance from the blast-face. However, mostly the presence of the water as an influential factor has been neglected. In this paper, an attempt has been made to modify United State Bureau of Mines model (USBM) by incorporating the effect of water. For this purpose, 35 blasting operations were investigated in Chadormalu iron mine, Iran and required blasting parameters were recorded in each blasting operation. Eventually, a coefficient was calculated and added in USBM model for effect of water. To demonstrate the capability of the suggested equation, several empirical models were also used to predict measured values of PPV. Results showed that the modified USBM model can perform better compared to previous models. By establishing new parameter in the USBM model, a new predictive model based on gene expression programming (GEP) was utilized and developed to predict GV. To show capability of GEP model in estimating GV, linear multiple regression (LMR) and non-linear multiple regression (NLMR) techniques were also performed and developed using the same datasets. The results demonstrated that the newly proposed model is able to predict blast-induced GV more accurately than other developed techniques.  相似文献   

13.
In this study, artificial neural networks (ANNs) were used to predict the settlement of one-way footings, without a need to perform any manual work such as using tables or charts. To achieve this, a computer programme was developed in the Matlab programming environment for calculating the settlement of one-way footings from five traditional settlement prediction methods. The footing geometry (length and width), the footing embedment depth, the bulk unit weight of the cohesionless soil, the footing applied pressure, and corrected standard penetration test varied during the settlement analyses, and the settlement value of each one-way footing was calculated for each traditional method by using the written programme. Then, an ANN model was developed for each method to predict the settlement by using the results of the analyses. The settlement values predicted from each ANN model developed were compared with the settlement values calculated from the traditional method. The predicted values were found to be quite close to the calculated values. Additionally, several performance indices such as determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to check the prediction capacity of the ANN models developed. The constructed ANN models have shown high prediction performance based on the performance indices calculated. The results demonstrated that the ANN models developed can be used at the preliminary stage of designing one-way footing on cohesionless soils without a need to perform any manual work such as using tables or charts.  相似文献   

14.
In addition to all benefits of blasting in mining and civil engineering applications, it has some undesirable environmental impacts. Backbreak is an unwanted phenomenon of blasting which can cause instability of mine walls, decreasing efficiency of drilling, falling down of machinery, etc. Recently, the use of new approaches such as artificial intelligence (AI) is greatly recommended by many researchers. In this paper, a new AI technique namely genetic programing (GP) was developed to predict BB. To prepare a sufficient database, 175 blasting works were investigated in Sungun copper mine, Iran. In these operations, the most influential parameters on BB including burden, spacing, stemming length, powder factor and stiffness ratio were measured and used to develop BB predictive models. To demonstrate capability of GP technique, a non-linear multiple regression (NLMR) model was also employed for prediction of BB. Value account for (VAF), root mean square error (RMSE) and coefficient of determination (R 2) were used to control the capacity performance of the predictive models. The performance indices obtained by GP approach indicate the higher reliability of GP compared to NLMR model. RMSE and VAF values of 0.327 and 97.655, respectively, for testing datasets of GP approach reveal the superiority of this model in predicting BB, while these values were obtained as 0.865 and 81.816, respectively, for NLMR model.  相似文献   

15.
The potential surface settlement, especially in urban areas, is one of the most hazardous factors in subway and other infrastructure tunnel excavations. Therefore, accurate prediction of maximum surface settlement (MSS) is essential to minimize the possible risk of damage. This paper presents a new hybrid model of artificial neural network (ANN) optimized by particle swarm optimization (PSO) for prediction of MSS. Here, this combination is abbreviated using PSO-ANN. To indicate the performance capacity of the PSO-ANN model in predicting MSS, a pre-developed ANN model was also developed. To construct the mentioned models, horizontal to vertical stress ratio, cohesion and Young’s modulus were set as input parameters, whereas MSS was considered as system output. A database consisting of 143 data sets, obtained from the line No. 2 of Karaj subway, in Iran, was used to develop the predictive models. The performance of the predictive models was evaluated by comparing performance prediction parameters, including root mean square error (RMSE), variance account for (VAF) and coefficient correlation (R 2). The results indicate that the proposed PSO-ANN model is able to predict MSS with a higher degree of accuracy in comparison with the ANN results. In addition, the results of sensitivity analysis show that the horizontal to vertical stress ratio has slightly higher effect of MSS compared to other model inputs.  相似文献   

16.
The use of fibre reinforced polymer (FRP) bars to reinforce concrete structures has received a great deal of attention in recent years due to their excellent corrosion resistance, high tensile strength, and good non-magnetization properties. Due to the relatively low modulus of elasticity of FRP bars, concrete members reinforced longitudinally with FRP bars experience reduced shear strength compared to the shear strength of those reinforced with the same amounts of steel reinforcement. This paper presents a simple yet improved model to calculate the concrete shear strength of FRP-reinforced concrete slender beams (a/d > 2.5) without stirrups based on the gene expression programming (GEP) approach. The model produced by GEP is constructed directly from a set of experimental results available in the literature. The results of training, testing and validation sets of the model are compared with experimental results. All of the results show that GEP is a strong technique for the prediction of the shear capacity of FRP-reinforced concrete beams without stirrups. The performance of the GEP model is also compared to that of four commonly used shear design provisions for FRP-reinforced concrete beams. The proposed model produced by GEP provides the most accurate results in calculating the concrete shear strength of FRP-reinforced concrete beams among existing shear equations provided by current provisions. A parametric study is also carried out to evaluate the ability of the proposed GEP model and current shear design guidelines to quantitatively account for the effects of basic shear design parameters on the shear strength of FRP-reinforced concrete beams.  相似文献   

17.
直流充电桩作为电动汽车有效的供电设备,其故障频发对电动汽车充电安全带来隐患.对充电桩的故障进行准确预测将有效地确保电动汽车充电过程的安全.本文提出了一种改进门控循环单元(gate recurrent unit, GRU)直流充电桩的故障预测模型.首先,分析充电过程中直流充电桩的常见故障类型,考虑到实际采集过程中具体故障数据样本量少的情况,利用变分自编码器(variational auto-encoder, VAE)数据增强方法对样本数据进行扩充;然后,基于GRU网络模型的故障预测方法,利用粒子群优化(particle swarm optimization, PSO)算法优化GRU网络参数,采用支持向量机(support vector machine, SVM)模型改善网络输出的分类函数,提出了PSO-GRU-SVM直流充电桩故障诊断模型;最后,利用算例对比改进前后的预测精度,分析对比混淆矩阵热力图,并且与常用的两种网络模型进行对比,结果表明了文中方法有效地提高了预测精度,验证了文章中方法的可行性.  相似文献   

18.
Tian  Hua  Shu  Jisen  Han  Liu 《Engineering with Computers》2019,35(1):305-314

Reliable determination/evaluation of the rock deformation can be useful prior any structural design application. Young’s modulus (E) affords great insight into the characteristics of the rock. However, its direct determination in the laboratory is costly and time-consuming. Therefore, rock deformation prediction through indirect techniques is greatly suggested. This paper describes hybrid particle swarm optimization (PSO)–artificial neural network (ANN) and imperialism competitive algorithm (ICA)–ANN to solve shortcomings of ANN itself. In fact, the influence of PSO and ICA on ANN results in predicting E was studied in this research. By investigating the related studies, the most important parameters of PSO and ICA were identified and a series of parametric studies for their determination were conducted. All models were built using three inputs (Schmidt hammer rebound number, point load index and p-wave velocity) and one output which is E. To have a fair comparison and to show the capability of the hybrid models, a pre-developed ANN model was also constructed to estimate E. Evaluation of the obtained results demonstrated that a higher ability of E prediction is received developing a hybrid ICA–ANN model. Coefficient of determination (R2) values of (0.952, 0.943 and 0.753) and (0.955, 0.949 and 0.712) were obtained for training and testing of ICA–ANN, PSO–ANN and ANN models, respectively. In addition, VAF values near to 100 (95.182 and 95.143 for train and test) were achieved for a developed ICA–ANN hybrid model. The results indicated that the proposed ICA–ANN model can be implemented better in improving performance capacity of ANN model compared to another implemented hybrid model.

  相似文献   

19.
In this study, gene expression programming (GEP) is utilized to derive a new model for the prediction of compressive strength of high performance concrete (HPC) mixes. The model is developed using a comprehensive database obtained from the literature. The validity of the proposed model is verified by applying it to estimate the compressive strength of a portion of test results that are not included in the analysis. Linear and nonlinear least squares regression analyses are performed to benchmark the GEP model. Contributions of the parameters affecting the compressive strength are evaluated through a sensitivity analysis. GEP is found to be an effective method for evaluating the compressive strength of HPC mixes. The prediction performance of the optimal GEP model is better than the regression models.  相似文献   

20.
In the present paper, two models based on artificial neural networks and genetic programming for predicting split tensile strength and percentage of water absorption of concretes containing Al2O3 nanoparticles have been developed at different ages of curing. For purpose of building these models, training and testing using experimental results for 144 specimens produced with 16 different mixture proportions were conducted. The data used in the multilayer feed-forward neural networks models and input variables of genetic programming models are arranged in a format of eight input parameters that cover the cement content, nanoparticle content, aggregate type, water content, the amount of superplasticizer, the type of curing medium, Age of curing and number of testing try. According to these input parameters, in the neural networks and genetic programming models, the split tensile strength and percentage of water absorption values of concretes containing Al2O3 nanoparticles were predicted. The training and testing results in the neural network and genetic programming models have shown that every two models have strong potential for predicting the split tensile strength and percentage of water absorption values of concretes containing Al2O3 nanoparticles. It has been found that NN and GEP models will be valid within the ranges of variables. In neural networks model, as the training and testing ended when minimum error norm of network gained, the best results were obtained, and in genetic programming model, when 4 gens was selected to construct the model, the best results were acquired. Although neural network have predicted better results, genetic programming is able to predict reasonable values with a simpler method rather than neural network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号