首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
为有效平滑风电出力,避免电池频繁充放电,提出了基于模型预测控制-模糊控制的并网功率平滑控制策略。首先采用模型预测控制获取风电目标出力与混合储能总输出参考功率;然后,设计了基于超级电容荷电状态的模糊自适应时间常数的一阶低通滤波法,对超级电容与锂电池实现自适应功率分配;接着基于双储能系统的充放电不平衡指标设计了模糊荷电状态优化控制,同时设计了改进双储能工作模式及相应切换规则以避免荷电状态越限;最后在Matlab/Simulink平台上建模仿真,验证了该控制策略的有效性。结果表明,所提控制策略不仅可以有效平滑风电并网功率,减小储能容量与功率配置,还可以减小锂电池的充放电切换次数,提高系统的双向调节能力。  相似文献   

2.
为更好地利用储能系统平抑风电功率波动,采用了两级全钒液流电池(VRB)储能的功率优化分配及控制策略。基于直驱型永磁同步风电系统的工作原理及系统变流器的控制策略,建立了全钒液流电池等效电路模型,采用基于VRB组荷电状态(SOC)的双模式切换的双闭环控制策略,通过比较每级电池组荷电状态值确定优选目标,以VRB组最大充放电功率为电池组安全充放电的约束条件,提出两级VRB组的功率优化分配控制策略,利用Matlab/Simulink仿真平台,在变风速条件下对不同荷电状态的两级VRB储能系统平抑风电功率波动进行仿真,并与功率平均分配策略作对比。结果表明,两级VRB储能系统功率优化分配控制策略能有效平抑风电机组功率波动,同时,还确保了电池组工作于安全运行区域,有效地减少了VRB组的充放电次数,延长了电池组的寿命。  相似文献   

3.
针对风电场预测功率与实际功率不匹配以及风力发电不确定性问题,提出一种以补偿风电预测误差和平抑风电波动为目标的储能控制策略。该策略以先进控制理论为基础,结合储能补偿预测区间和储能平抑风电波动区间,提取考虑储能运行成本的储能最优滚动控制域。首先,针对储能补偿预测误差目标,制定储能控制策略,提取允许误差内的储能补偿区间;其次,考虑风电功率波动要求及荷电状态(SOC)约束,采用模型预测控制求解出储能滚动控制序列,确定储能平抑区间。最后,考虑储能运行成本,将补偿区间和平抑区间相结合,制定储能最优滚动控制区间,以此为基础确定储能容量。以中国新疆某风电场为例,对该文提出的储能控制策略与传统控制策略进行对比验证,验证所提策略的可行性和有效性。  相似文献   

4.
利用储能技术能够有效平抑光伏功率波动,提高光伏输出功率的稳定性。该文提出一种基于卡尔曼滤波-模型预测控制(KF-MPC)的光储系统双调节反馈优化控制方法,即将卡尔曼滤波和模型预测控制相结合,采用双调节反馈控制实现光储系统的优化控制。在卡尔曼滤波器中引入滤波调节因子,通过自适应调节卡尔曼滤波增益使储能系统在不同工况下有效平抑光伏功率波动。在模型预测控制器中以储能出力最小、荷电状态最优以及光伏波动率最低为目标,通过模型预测控制滚动优化得到储能系统最优出力和最佳荷电状态。通过对某光储电站实际运行数据分析可知,该文所提出的控制策略在平抑光伏功率波动的同时还可有效延长储能系统使用寿命,具有工程应用前景。  相似文献   

5.
为平抑直驱式永磁同步风电机组功率波动,文章采用双级锂电池-超级电容混合储能的分层控制策略。首先,通过双向DC/DC变换器控制各储能单元充、放电;其次,将混合储能系统分为协调管理层和功率优化层,协调管理层充分利用锂电池和超级电容优势互补,功率优化层以锂电池荷电状态和最大充、放电功率为约束,建立锂电池功率分配策略及充、放电模式切换;最后,将实测风速数据导入仿真模型,并对比单级锂电池系统的充、放电次数。仿真结果表明,文章所提混合储能系统分层控制策略可很好地实现平滑风电系统出力,且减少了锂电池的充、放电次数,延长锂电池的使用寿命。  相似文献   

6.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

7.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

8.
随着风电并入电网渗透率的提高,其出力波动性会危及电力系统的安全稳定运行,混合储能装置的使用能很好地平抑风电并网的波动,改善电网的运行能力。为符合国家并网的标准,文章提出了混合储能控制策略。首先,运用指数平滑法滤除风电出力的高频分量得到并网功率;其次,采用自适应噪声的完整集合经验模态分解,将风电波动功率按频率高低依次划分为不同的固有模态分量,计算相邻固有模态分量的互信息来分离高频和低频分量,并分别由电池和超级电容承担低频、高频分量;为了消除荷电状态越限的问题,采用自适应调整分界点实现储能内部协调优化运行。算例结果表明,文章所提出的控制策略具有一定的适用性,能确保储能装置运行在安全荷电状态,延长其运行寿命。  相似文献   

9.
陈洁  詹仲强 《太阳能学报》2018,39(11):3286-3294
以平抑风电场有功功率波动为目标,利用小波包分解风功率信号得到功率波动超限分量,使用高阶统计量分析各个分量获取特征值,采用支持向量机对各个分量进行分类,得到风氢混合储能系统中需被超级电容吸收的高频波动部分和被制氢发电系统消纳的低频波动部分,构建风氢混合储能系统功率平滑控制策略。最后在仿真中通过与常规混合储能系统进行对比,得到该方法能够有效平抑风电场有功功率波动,平滑风功率曲线,研究结果可为电转气这一新型储能技术提供一定的参考。  相似文献   

10.
新能源场站配置储能系统可以平抑输出功率的波动、承担新能源机组调频义务。若储能仅考虑单一平抑波动工况时可能会造成风储联合系统调频有功备用不足。因此本文提出一种考虑调频有功备用与荷电状态恢复的平抑风电功率波动策略,首先利用聚类算法提取储能平抑波动典型工况,计算储能平抑波动功率需求和剩余有功功率;其次,结合国标对风电场有功备用相关标准,利用储能调频备用与风电减载联合提供有功备用,并对储能平抑波动功率设置限幅;最后,利用模糊控制理论设计储能系统边缘区荷电状态恢复策略。基于实际风电场运行数据进行仿真分析,结果表明所提出的方法可在储能系统平抑风电波动时提供有功备用以及边缘区荷电状态恢复。  相似文献   

11.
为了降低储能系统充放电次数,提高储能系统的使用寿命,提出一种基于经验模态分解(empirical mode decomposition,EMD)的混合储能系统功率分配方法。风电输出功率经过EMD滤波后的低频分量作为风电并网功率信号,中频和高频分量分别由储能电池和超级电容器吸收;同时根据混合储能系统的荷电状态,自适应调整EMD的滤波阶数以维持荷电状态的稳定。仿真实例表明,该方法可有效平抑风电功率波动,避免储能介质的过充过放,达到延长电池使用寿命的目的。  相似文献   

12.
风力发电的随机波动性对电力系统的稳定性带来不利影响,通过配备储能系统可以提升电网接纳风电的能力。本文定义了反映储能系统平抑风电波动效果的波动系数;提出一种基于动态波动系数的风电功率平滑控制策略;建立了以波动系数为优化变量,风电实际功率和并网功率的差值最小为目标,并网功率波动要求为约束的优化模型;设计了基于滑动窗口的遗传算法求解方案,优化求得动态波动系数及相应的储能额定容量及功率,最终利用储能抑制风电功率的波动。实验表明,与传统控制策略相比,该策略能有效抑制功率波动并降低储能容量,节约成本。  相似文献   

13.
针对光伏直流微电网中光伏出力和负荷投切产生的功率波动,将锂电池和超级电容器构成的混合储能系统(hybrid energy storage system,HESS)运用在直流微网中可以平抑系统功率波动和稳定直流母线电压。在考虑超级电容荷电状态(SOC)的二次功率分配的基础上,提出一种基于光伏单元,混合储能系统和负荷三者协调运行的控制模式。根据光伏电池出力情况和负载消耗功率的关系以及各储能单元间SOC的不同,将光伏直流微电网分为4种运行模式,实时调节各储能单元的出力情况,使系统各微源间的功率达到动态平衡。最后,在PSCAD/EMTDC中搭建了一个含混合储能系统的光伏直流微网仿真模型,结果表明所提控制策略既能稳定运行在各种工作模式,又能保证直流微网系统稳定可靠运行的前提下优化各微源间的出力,验证了该控制策略的有效性和准确性。  相似文献   

14.
针对独立运行的多储能直流微网,为了减少蓄电池充放电次数和提高蓄电池间荷电状态的均衡速度及精度,提出了一种基于源荷功率差信号的直流微网混合储能控制策略。该策略在详细分析了直流微网工作模式的基础上,设置功率分层点作为超级电容和蓄电池工作切换依据,即超级电容和蓄电池分别优先工作在源荷功率差较小和较大的情况下,避免了蓄电池在源荷功率平衡点处频繁充放电切换。当多个蓄电池同时出力时,通过改进下垂控制,动态地增大均衡期间蓄电池间下垂系数差别,提升蓄电池荷电状态及负荷功率均衡速度和精度,避免部分蓄电池因荷电状态越限而提前退出运行。最后,在MATLAB/Simulink仿真软件上验证了所提控制策略可稳定运行在各种模式下,并具有较高的荷电状态均衡速度和精度。  相似文献   

15.
针对光伏出力的波动性和间歇性,文章将蓄电池和超级电容器相结合的混合储能系统HESS(Hybrid Energy Storage System)应用到光伏并网系统,实现了光伏系统的功率平滑,平衡能量,提高并网电能质量。同时考虑到低通滤波法在进行功率分配时存在滤波时间常数难以计算的问题,就蓄电池与超级电容提出一种由超级电容荷电状态(SOC)来反馈二者功率分配的控制策略;该策略以超级电容的SOC和功率分配单元的输出功率作为参考值,对混合储能系统充放电过程进行设计。仿真结果表明:与低通滤波法相比,文章所提功率分配控制策略延长了蓄电池的使用年限,防止了超级电容器的过充、过放,而且实现了单位功率因数并网。  相似文献   

16.
超级电容在响应系统功率波动时,荷电状态与额定值相比会产生一定偏移。针对该问题,文章在直流母线电压变化率进入稳定状态后,提出了在蓄电池电流内环增加与超级电容实际荷电状态有关的扰动项,改变蓄电池及超级电容的参考电流,实现稳态下蓄电池对超级电容的功率修正,最终使超级电容的荷电状态自动恢复至额定值。将所提的基于稳态功率修正的混合储能控制策略应用于直流微网并进行仿真,结果表明,该策略能够增强混合储能可靠性,减少超级电容配置容量,提高微网的稳定性和经济性。  相似文献   

17.
风电的不确定性和高渗透率,导致电网调度控制难和电网惯量下降等问题,为此提出了基于混合储能的功率分配系数自适应控制策略和基于T-S模糊神经网络的调频功率自适应控制策略。首先,对风场混合储能系统健康状态进行评估;其次,功率分配系数自适应控制器根据各组混合储能系统健康状态系数对风场所有风机输出总功率和调度功率之间的差值进行分配,实现电网调度功率跟踪;最后,调频功率自适应控制器根据电网频率偏差和各组混合储能系统健康状态控制各组混合储能系统为电网提供频率支撑。仿真分析表明,所提出的功率分配系数自适应控制策略能有效分配功率差,减小电网调度控制难度;调频功率自适应控制策略能有效增加电网惯量,为电网提供频率支撑。  相似文献   

18.
光伏发电的间歇性和随机性是制约其大规模发展的主要因素,由此文章提出一种适用于多场景的光伏-双单元储能系统协同平抑功率波动控制策略。首先,针对光伏电站多个典型出力场景,并结合并网限制要求,对光伏原始功率信号进行变分模态分解,求得并网目标功率和储能需求功率,并利用阈值补偿方法缩短计算时长;然后,通过协调互补的双单元储能系统对储能需求功率进行消纳,使得各储能单元能够在标准充、放循环深度内独立承担任务;最后,在Matlab平台上对所提信号分析算法的平抑效果,以及光伏-双单元储能系统协同平抑功率波动控制策略的普适性进行仿真验证。仿真结果表明,在多个典型场景下,所测得的并网目标功率均满足并网限制要求,所选的分析算法可有效平抑光伏出力的波动,该协同控制策略能够保证双单元储能系统的长期稳定运行,大幅度提高了光伏并网的可靠性。  相似文献   

19.
以全钒液流电池和超级电容器组成的混合储能系统(hybrid energy storage system,HESS)可有效平抑风电功率波动.为了提高储能系统的灵活性和安全性,提出一种基于参数优化变分模态分解(variational mode decomposition,VMD)的混合储能功率分配方法.首先利用指数平滑法依...  相似文献   

20.
丁明  吴杰  张晶晶 《太阳能学报》2019,40(3):593-599
采用基于风电并网波动标准的自适应小波包分解方法处理风电功率,利用混合储能系统平抑风电并网后的波动分量。将混合储能系统内部功率指令划分与系统容量配置相结合,以储能系统年综合成本最小为目标,建立基于电池寿命量化模型的混合储能容量优化模型,进而通过穷举对比不同功率指令分界点所对应的系统成本确定最优分界点。以某风电场典型日出力数据为例,对最优分界点及其对应的储能配置进行优化分析,仿真结果验证所提方法的技术合理性和经济实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号