首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cui  Jiabin  Ma  Pin  Li  Weidan  Jiang  Rui  Zheng  Lirong  Lin  Yuan  Guo  Chang  Yin  Xiong  Wang  Leyu 《Nano Research》2021,14(12):4714-4718

Hierarchical Pt-alloys enriched with active sites are highly desirable for efficient catalysis, but their syntheses generally need time-consuming and elaborate annealing treatment at high temperature. We herein report a surface active-site engineering strategy for constructing the hierarchical PtNi nanocatalysts with an atomic Pt-skin layer (PtNi@Pt-SL) towards efficient triiodide reduction reaction (TRR) via an acid-dealloying approach. The facile acid-dealloying process promotes the formation of surface Pt active sites on the hierarchical Pt-alloys, and thus results in good catalytic performance towards TRR. Theoretical calculation reveals that the enhanced catalytic property stems from the moderate energy barriers for iodide atoms on the surface Pt active-sites. The surface active-site engineering strategy paves a new way for the design of active and durable electrocatalysts.

  相似文献   

2.
Inorganic perovskite lasers are of particular interest,with much recent work focusing on Fabry-P6rot cavity-forming nanowires.We demonstrate the direct observation of lasing from transverse electromagnetic(TEM)modes with a long coherence time-9.5ps in coupled CsPbBr3 quantum dots,which dispense with an external cavity resonator and show how the wavelength of the modes can be controlled via two independent tuning-mechanisms.Controlling the pump power allowed us tofine-tune the TEM mode structure to the emission wavelength,thus providing a degree of control over the properties of the lasing signal.The temperature-tuning provided an additional degree of control over the wavelength of the lasing peak,importantly,maintained a constant full width at half maximum(FWHM)over the entire tuning range without mode-hopping.  相似文献   

3.
Gong  Lanqian  Yang  Huan  Wang  Hongming  Qi  Ruijuan  Wang  Junlei  Chen  Shenghua  You  Bo  Dong  Zehua  Liu  Hongfang  Xia  Bao Yu 《Nano Research》2021,14(12):4528-4533

Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm−2. Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.

  相似文献   

4.
A three-dimensional copper metal-organic framework with the rare chabazite(CHA)topology namely FJI-Y11 has been constructed with flexibly carboxylic ligand 5,5'-[(1,4-phenylenebis(methylene))bis(oxy)]diisophthalic acid(H4L).FJI-Y11 exhibits high water stability with the pH range from 2 to 12 at temperature as high as 373 K.Importantly,FJI-Y11 also shows high efficiency of hydrogen isotope separation using dynamic column breakthrough experiments under atmospheric pressure at 77 K.Attributed to its excellent structural stability,FJI-Y11 possesses good regenerated performance and maintains high separation efficiency after three cycles of breakthrough experiments.  相似文献   

5.
Jiang  Haoyu  Qi  Jizhen  Wu  Dongchang  Lu  Wei  Qian  Jiahui  Qu  Haifeng  Zhang  Yixiao  Liu  Pei  Liu  Xi  Chen  Liwei 《Nano Research》2021,14(12):4802-4807

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.

  相似文献   

6.
Acute kidney injury(AKI),has become the focus of increasing attention due to its high risk of death.The early diagnosis and treatment of AKI significantly reduce the risk of renal tissue damage and kidney dysfunction.However,the efficient early diagnosis and treatment approach for AKI remains a challenge.AKI screening via precise nanomaterial theranostics is a new alternative approach.This study summarizes the recent advances in functional nanomaterials in the early detection and treatment of AKI.The challenges and problems in the use of nanomaterials for AKI in clinical applications are also discussed.It is anticipated that highlighting these new advances will lay the foundation for further translational research on the promising application of nanomaterials for AKI.  相似文献   

7.
Ren  Yumei  Yu  Chengbing  Chen  Zhonghui  Xu  Yuxi 《Nano Research》2021,14(6):2023-2036

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

  相似文献   

8.
While metal nanoparticles(NPs)have shown great promising applications as heterogeneous catalysts,their agglomeration caused by thermodynamic instability is detrimental to the catalytic performance.To tackle this hurdle,we successfully prepared a functional and stable porphyrinic metal-organic framework(MOF),PCN-224-RT,as a host for encapsulating metal nanoparticles by direct stirring at room temperature.As a result,Pt@PCN-224-RT composites with well-dispersed Pt NPs can be constructed by introducing pre-synthesized Pt NPs into the precursor solution of PCN-224-RT.Of note,the rapid and simple stirring method in this work is more in line with the requirements of environmental friendly and industrialization compared with traditional solvothermal methods.  相似文献   

9.
The principle of reticular chemistry has been widely used to guide the design of crystalline porous materials such as metal organic frameworks(MOFs)and covalent organic frameworks(COFs).While in the early strategies only the symmetries of the building blocks were considered for reticular synthesis of COFs,recently a few researches on COFs with hierarchical porosities indicate that connecting sequence of building blocks also plays a crucial role in determining crystalline structures of COFs.However,this important phenomenon has not been systematically investigated yet.In this article,a model system has been established to demonstrate how different connecting sequences of two C2v-symmetric building blocks lead to the formation of four two-dimensional(2D)COFs with distinct framework structures.To verify this concept,target synthesis was conducted to produce three COFs,whose structures were confirmed by powder X-ray diffraction and pore size distribution analysis.  相似文献   

10.
Despite the unique properties of bismuth(Bi),there is a lack of two-dimensional(2D)heterostructures between Bi and other functional 2D materials.Here,a coherent strategy is reported to simultaneously synthesize rhombohedral phase Bi nanoflakes and bismuth oxychloride(BiOCI)nanosheets.The delicate balance between several reactions is mediated mainly for the reduction and chlorination in the chemical vapor transport(CVT)process.The Bi-BiOCI lateral heterostructures have been constructed via the coalescence of the two different 2D nanostructures.The characteristics of ambipolar conducting Bi and insulator-like BiOCI are elaborated by scanning microwave impedance microscopy(sMIM).This work demonstrates a way to construct a 2D Bi nanostructure in junction with its oxyhalide.  相似文献   

11.
Metal-based secondary building unit and the shape of organic ligands are the two crucial factors for determining the final topology of metal-organic materials.A careful choice of organic and inorganic structural building units occasionally produces unexpected structures,facilitating deeper fundamental understanding of coordination-driven self-assembly behind metal-organic materials.Here,we have synthesized a triangular metal-organic polygon(MOT-1),assembled from bulky tetramethyl terephthalate and Zr-based secondary building unit.Surprisingly,the Zr-based secondary building unit serves as an unusual ditopic Zr-connector,toform metal-organic polygon MOT-1,proven to be a good candidate for water adsorption with recyclability.This study highlights the interplay of the geometrically frustrated ligand and secondary building unit in controlling the connectivity of metal-organic polygon.Such a strategy can be further used to unveil a new class of metal-organic materials.  相似文献   

12.
In this paper,a dual-ligand design strategy is demonstrated to modulate the performance of the electronically conductive metalorganic frameworks(EC-MOFs)thin film with a spray layer-by-layer assembly method.The thin film not only can be precisely prepared in nanometer scale(20-70 nm),but also shows the pin-hole-free smooth surface.The high quality nano-film of 2,3,6,7,10,11-hexaiminotriphenylene(HITP)doped Cu-HHTP enables the precise modulation of the chemiresistive sensitivity and selectivity.Selectivity improvement over 220%were realized for benzene vs.NH3>as well as enhanced response and recovery properties.In addition,the selectivity of the EC-MOF thin film sensors toward other gases(e.g.triethylamine,methane,ethylbenzene,hydrogen,butanone,and acetone)vs.NH3 at room temperature is also discussed.  相似文献   

13.
Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation,breakthrough is still highly needed in the design and synthesis of wonderful non-precious-metal electrocatalyst.Herein,a nanovilli Ni2P electrode,which with superaerophobic and superhydropholic can significantly facilitate the mass and electron transfer was constructed via a facial morphology control strategy.Meanwhile,the substitution of sluggish oxygen evolution with urea oxidation,lowering the two-electrode cell voltage to only 1.48 volts to achieve a current density of 10 mA·cm-2.Thus,the as-constructed electrode achieves the operation of hydrogen generation by an AA battery.This work sheds new light on the exploration of other high-efficient electrocatalysts for hydrogen generation by using intermittent clean energy.  相似文献   

14.
The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity.The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations,multi-metal spinel oxides with precise compositions can be obtained,and used as catalyst precursor for the reverse water-gas shift reaction.The differences in the spinel initial composition and structure,determined by neutron powder diffraction,influence the overall catalytic activity with changes in the process of in s itu formation of active,metal-oxide supported metal nanoparticles,which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.  相似文献   

15.
Two-dimensional(2D)transition metal dichalcogenide(TMDC)monolayers,a class of ultrathin materials with a direct bandgap and high exciton binding energies,provide an ideal platform to study the photoluminescence(PL)of light-emitting devices.Atomically thin TMDCs usually contain various defects,which enrich the lattice structure and give rise to many intriguing properties.As the influences of defects can be either detrimental or beneficial,a comprehensive understanding of the internal mechanisms underlying defect behaviour is required for PL tailoring.Herein,recent advances in the defect influences on PL emission are summarized and discussed.Fundamental mechanisms are the focus of this review,such as radiative/nonradiative recombination kinetics and band structure modification.Both challenges and opportunities are present in the field of defect manipulation,and the exploration of mechanisms is expected tofacilitate the applications of 2D TMDCs in the future.  相似文献   

16.
How to regulate the supramolecular structures in the assembly of graphene quantum dots(GQDs)is still a great challenge to be overcome.Herein,the GQDs of 1-3 layers with high quality are synthesized from the new precursor m-trihydroxybenzene in a green method.More importantly,a strategy for designing the supramolecular structures of GQDs is demonstrated,and the novel supramolecular morphologies of GQDs have been constructed for the first time.Moreover,the supramolecular morphologies of GQDs can be well controlled by regulating the preparation conditions,and the formation mechanism of the branch-like supramolecular structure has been explained by the the diffusion-limited aggregation(DLA)model.This work not only develops a new precoursor to synthesize GQDs,but also opens up an effective route toform the polymorphic supermolecules,thus greatly facilitating their potential applications.  相似文献   

17.
Ma  Lianbo  Lv  Yaohui  Wu  Junxiong  Xia  Chuan  Kang  Qi  Zhang  Yizhou  Liang  Hanfeng  Jin  Zhong 《Nano Research》2021,14(12):4442-4470

Potassium-ion batteries (PIBs) are appealing alternatives to conventional lithium-ion batteries (LIBs) because of their wide potential window, fast ionic conductivity in the electrolyte, and reduced cost. However, PIBs suffer from sluggish K+ reaction kinetics in electrode materials, large volume expansion of electroactive materials, and the unstable solid electrolyte interphase. Various strategies, especially in terms of electrode design, have been proposed to address these issues. In this review, the recent progress on advanced anode materials of PIBs is systematically discussed, ranging from the design principles, and nanoscale fabrication and engineering to the structure-performance relationship. Finally, the remaining limitations, potential solutions, and possible research directions for the development of PIBs towards practical applications are presented. This review will provide new insights into the lab development and real-world applications of PIBs.

  相似文献   

18.
Optical manipulation of micro/nanoscale objects is of importance in life sciences,colloidal science,and nanotechnology.Optothermal tweezers exhibit superior manipulation capability at low optical intensity.However,our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers.Herein,we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers,which enables us to rationally design the tweezers for optimum performance in targeted applications.Specifically,we have revealed that the non-uniform temperature distribution induces water polarization and charge separation,which creates the thermoelectric field dominating the optothermal trapping.We further design experiments to systematically verify our atomistic simulations.Guided by our new model,we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes.Moreover,we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge,which has been challenging for conventional optical tweezers.With the atomistic understanding that enables the performance optimization and function expansion,optothermal tweezers will further their impacts.  相似文献   

19.
Li  Meng  Zhao  Andong  Dong  Kai  Li  Wen  Ren  Jinsong  Qu  Xiaogang 《Nano Research》2015,8(10):3216-3227

Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer’s disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have promising effects against AD and have been used in clinic trials. Herein, we demonstrate, for the first time, the application of WS2 nanosheets, to not only effectively inhibit Aβ aggregation, but also dissociate preformed Aβ aggregates upon near infrared (NIR) irradiation. Additionally, the biocompatible WS2 nanosheets possess the ability to cross the blood-brain barrier (BBB) to overcome the limitations of most previously reported Aβ inhibitors. Through van der Waals and electrostatic interactions between Aβ40 and WS2, Aβ40 monomers can be selectively adsorbed on the surface of the nanosheet to inhibit the Aβ40 aggregation process. Intriguingly, the unique high NIR absorption property of WS2 enables amyloid aggregates to be dissolved upon NIR irradiation. These results will promote biological applications of WS2 and provide new insight into the design of multifunctional nanomaterials for AD treatment.

  相似文献   

20.
The 2019 coronavirus disease(COVID-19)has affected more than 200 countries.Wearing masks can effectively cut off the virus spreading route since the coronavirus is mainly spreading by respiratory droplets.However,the common surgical masks cannot be reused,resulting in the increasing economic and resource consumption around the world.Herein,we report a superhydrophobic,photo-sterilize,and reusable mask based on graphene nanosheet-embedded carbon(GNEC)film,with high-density edges of standing structured graphene nanosheets.The GNEC mask exhibits an excellent hydrophobic ability(water contact angle:157.9°)and an outstanding filtration efficiency with 100%bacterial filtration efficiency(BFE).In addition,the GNEC mask shows the prominent photo-sterilize performance,heating up to 110℃quickly under the solar illumination.These high performances may facilitate the combat against the COVID-19 outbreaks,while the reusable masks help reducing the economic and resource consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号