首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This study aims to estimate the material properties of the porcine vitreous while testing it in close to its natural physiological conditions. Eighteen porcine eyes were tested within 48 h post-mortem. A custom-built computer-controlled test rig was designed to support, load and monitor the behaviour of eye globes while being subjected to dynamic rotation cycles mimicking saccade eye movement. Specimens were glued to the base of a container, surrounded by gelatin, frozen and cut in half to expose the vitreous. After thawing, the container was subjected to concentric dynamic rotations of up to 5°, 10° or 15°, while taking 50 MP photos of the specimen every 2 ms. The images were analysed by a digital image correlation algorithm to trace the movement of marked points on the vitreous surface with different radii from the centre of the posterior chamber. The initial camera image was used in building a finite-element model of the test set-up, which was used in an inverse analysis exercise to estimate the material properties of the vitreous. Angular displacements of the monitored points were up to 3.3°, 4.1° and 3.9° in response to eye rotations of 5°, 10° and 15°, respectively. With the experimental relationships between eye rotation and angular displacements used as target behaviour, the inverse analysis exercise estimated the initial shear modulus, the long-term shear modulus and the viscoelastic decay constant of the porcine vitreous as 2.10 ± 0.15 Pa, 0.50 ± 0.04 Pa and 1.20 ± 0.09 s−1, respectively. Consideration of the viscoelasticity of the vitreous was essential to represent its experimental behaviour. Testing the vitreous in close to its normal physiological conditions produced estimations of the initial shear modulus and long-term shear modulus that were, respectively, smaller and larger than reported values (Zimberlin et al. 2010 Soft Matter 6, 3632–3635. (doi:10.1039/b925407b), Liu et al. 2013 J. Biomech. 46, 1321–7. (doi:10.1016/j.jbiomech.2013.02.006), Rossi et al. 2011 Invest. Ophthalmol. Vis. Sci. 52, 3994–4002. (doi:10.1167/iovs.10-6477)).  相似文献   

2.
The characteristics of how graphite particles adhere to the walls of high-temperature gas-cooled reactors are very important for analyzing reactor source terms. In the present study, atomic force microscopy (AFM) is used to measure the particle adhesion force and the wall morphology, then Lennard-Jones potential theory and the finite element method (FEM) are coupled to calculate the adhesion force between different particles and rough walls. The obvious deviations between the AFM measurements and the theoretical models are due to the contact hypothesis of a sphere with a smooth flat plane in the latter. The FEM results reveal the formation of maximum adhesion at the pull-off point of the particle and the corresponding stress distribution. For aspherical particles, the local curvature of the particle contact interface is the main factor affecting the adhesion force. In addition, for rough walls, different contact regimes correspond to different adhesion trends. When discrete wall roughness with hemispheres and truncated cones is used, the FEM predictions are closer to the AFM measurements, indicating that roughness dominates the adhesion weakening.  相似文献   

3.
This paper aims to study the size- and shape-dependent steady-state pull-off force in molecular adhesion between two soft elastic materials. The adhesion consists of a patch of non-covalent bonds formed between ligand and receptor molecules on opposing adhesion surfaces. Classical contact mechanics is used to model the deformation of elastic materials while Bell’s model is adopted to describe stochastic breaking/reforming of molecular bonds. A coupled elastic-stochastic model is established to show that there exists a critical adhesion size, which leads to a critical stress concentration index after proper normalization, beyond which stress concentration near the contact edge causes crack like failure of the adhesion patch governed by Griffith’s criterion and below which the pull-off traction is saturated at a constant strength governed by Bell’s model of molecular adhesion. In addition to size effect, optimal adhesion can also be achieved by designing the shape of the contact surfaces, although it is sensitive to small variations in shape at large adhesion size or stress concentration index. A robust, shape-insensitive high-strength adhesion state becomes possible when the adhesion size or the stress concentration index is sufficiently small.  相似文献   

4.
Pull-off forces for chemically modified atomic force microscopy tips in contact with flat substrates coated with receptor molecules are calculated using a Johnson, Kendall, and Roberts contact mechanics model. The expression for the work of adhesion is modified to account for the formation of discrete numbers of chemical bonds (nBonds) between the tip and substrate. The model predicts that the pull-off force scales as nBonds(1/2), which differs from a common assumption that the pull-off force scales linearly with nBonds. Periodic peak progressions are observed in histograms generated from hundreds of computed pull-off forces. The histogram periodicity is the signature of discrete chemical interactions between the tip and substrate and allows estimation of single-bond rupture forces. The effects of solvent, probe tip radius, and chemical binding probability on the detection of single-bond forces are examined systematically. A dimensionless parameter, the effective force resolution, is introduced that serves as a quantitative predictor for determining when periodicity in force histograms can occur. The output of model is compared to recent experimental results involving tips and substrates modified with self-assembled monolayers. An advantage of this contact mechanics approach is that it allows straightforward estimation of solvent effects on pull-off forces.  相似文献   

5.
Numerical simulations based on the bifurcation and imperfection versions of the strain localization theory are used in this paper to predict the failure loci of metals and applied to an advanced high strength steel subjected to proportional loading paths. The results are evaluated against the 3D unit cell analyses of Dunand and Mohr (J Mech Phys Solids 66(1):133–153, 2014. doi: 10.1016/j.jmps.2014.01.008) available in the literature. The Gurson porous plasticity model (Gurson in J Eng Mater Technol 99(1):2–15, 1977. doi: 10.1115/1.344340) is used to induce strain softening and drive the localization process. The effects of the void growth, void nucleation and void softening in shear are investigated over a large range of stress triaxialities and Lode parameters. A correlation between the imperfection and bifurcation results is established.  相似文献   

6.
Cell polarization is a ubiquitous process which results in cellular constituents being organized into discrete intracellular spatial domains. It occurs in a variety of cell types, including epithelial cells, immune system cells and neurons. A key player in this process is the Par protein family whose asymmetric localization to anterior and posterior parts of the cell is crucial for proper division and cell fate specification. In this paper, we explore a stochastic analogue of the temporal model of Par protein interactions first developed in Dawes & Munro (Dawes and Munro 2011 Biophys. J. 101, 1412–1422. (doi:10.1016/j.bpj.2011.07.030)). We focus on how protein abundance influences the behaviour of both the deterministic and stochastic versions of the model. In Dawes & Munro (2011), it was found that bistable behaviour in the temporal model of Par protein led to the existence of complementary domains in the corresponding spatio-temporal model. Here, we find that the corresponding temporal stochastic model permits switching behaviour (the model solution ‘jumps’ between steady states) for lower protein abundances, whereas for higher protein abundances the stochastic and deterministic models are in good agreement (the model solution evolves to one of two steady states). This led us to the testable hypothesis that cells with lower abundances of Par protein may be more sensitive to external cues, whereas cells with higher abundances of Par protein may be less sensitive to external cues. In order to gain more control over the precise abundance of Par protein, we proposed and explored a second model (again, examining both deterministic and stochastic versions) in which the total number of Par molecules is conserved. We found that this model required an additional dimerization reaction in the cytoplasm in order for bistable and switching behaviour to be found. Once this additional reaction was included, we found that both the first and second models gave qualitatively similar results but in different regions of the parameter space, suggesting a further regulatory mechanism that cells could potentially use to modulate their response to external signals.  相似文献   

7.
8.
Using measurements based on particle image velocimetry in combination with a novel compact theoretical framework to describe hair mechanics, we found that spider and cricket air motion sensing hairs work close to the physical limit of sensitivity and energy transmission in a broad range of relatively high frequencies. In this range, the hairs closely follow the motion of the incoming flow because a minimum of energy is dissipated by forces acting in their basal articulation. This frequency band is located beyond the frequency at which the angular displacement of the hair is maximum which is between about 40 and 600 Hz, depending on hair length (Barth et al. [1] Phil. Trans. R. Soc. Lond. B 340, 445–461 (doi:10.1098/rstb.1993.0084)). Given that the magnitude of natural airborne signals is known to decrease with frequency, our results point towards the possible existence of spectral signatures in the higher frequency range that may be weak but of biological significance.  相似文献   

9.
The effects of phase morphology and the adhesion between phases of ethylene-vinylalcohol copolymer(EVOH)/nylon 6/12 copolymer blends on the fracture properties were estimated. Films of the blends which were obtained by extrusion processing showed different phase morphologies depending on the composition of the nylon 6/12 copolymer. The morphology of the partially miscible blend (EVOH and nylon 6f-nylon121-f where f=0.8) was needle-like in appearance. On the other hand the immiscible blend (EVOH and nylon 6f-nylon121-f where f=0.5) had equiaxed particles of nylon 6/12. The plastic deformation of films of the blends was observed using transmission electron microscopy. Deformation zones were observed for both blends but extensive debonding of particle interfaces was observed in the immiscible blend system. These observations are reinforced by our measurements of the interfacial fracture energy, Gc, between EVOH and nylon 6f-nylon121-f made using a double cantilever beam test. Gc decreases monotonically as 1–f increases. The fracture toughness of the partially miscible blend film measured at low temperature (–80°C) was higher than that of EVOH alone and there was fractographic evidence of a larger crack tip plastic deformation zone. In contrast, the fracture toughness of the immiscible blend was lower than that of EVOH and there was fractographic evidence of extensive debonding of the second phase nylon particles. This result suggests that it is important to have good adhesion between phases to achieve the optimum fracture toughness of these polymer blends. © 1998 Chapman & Hall  相似文献   

10.
Rhinolophidae, a family of echolocating bats, feature very baroque noseleaves that are assumed to shape their emission beam. Zhuang & Muller (Zhuang & Muller 2006 Phys. Rev. Lett. 97, 218701 (doi:10.1103/PhysRevLett.97.218701); Zhuang & Muller 2007 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(Pt. 1), 051902 (doi:10.1103/PhysRevE.76.051902)) have proposed, based on finite element simulations, that the furrows present in the noseleaves of these bats act as resonance cavities. Using Rhinolophus rouxi as a model species, they reported that a resonance phenomenon causes the main beam to be elongated at a particular narrow frequency range. Virtually filling the furrows reduced the extent of the main lobe. However, the results of Zhuang & Muller are difficult to reconcile with the ecological background of R. rouxi. In this report, we replicate the study of Zhuang & Muller, and extend it in important ways: (i) we take the filtering of the moving pinnae into account, (ii) we use a model of the echolocation task faced by Rhinolophidae to estimate the effect of any alterations to the emission beam on the echolocation performance of the bat, and (iii) we validate our simulations using a physical mock-up of the morphology of R. rouxi. In contrast to Zhuang & Muller, we find the furrows to focus the emitted energy across the whole range of frequencies contained in the calls of R. rouxi (both in simulations and in measurements). Depending on the frequency, the focusing effect of the furrows has different consequences for the estimated echolocation performance. We argue that the furrows act to focus the beam in order to reduce the influence of clutter echoes.  相似文献   

11.
In this study, the effect of the substrate roughness on adhesion of mushroom-shaped microstructure was experimentally investigated. To do so, 12 substrates having different isotropic roughness were prepared from the same material by replicating topography of different surfaces. The pull-off forces generated by mushroom-shaped microstructure in contact with the tested substrates were measured and compared with the pull-off forces generated by a smooth reference. It was found that classical roughness parameters, such as average roughness (Ra) and others, cannot be used to explain topography-related variation in pull-off force. This has led us to the development of an integrated roughness parameter capable of explaining results of pull-off measurements. Using this parameter, we have also found that there is a critical roughness, above which neither smooth nor microstructured surface could generate any attachment force, which may have important implications on design of both adhesive and anti-adhesive surfaces.  相似文献   

12.
Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague–Dawley rat thoracic ducts (n = 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH2O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48. (doi:10.1023/A:1010835316564)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural ‘fibre families’ oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.  相似文献   

13.
In this study, the effect of various seed layers (95Ni–5Cr, 80Ni–20Cr and Cr) on the adhesion strength of flexible copper clad laminate (FCCL), which was manufactured by the roll-to-roll process, was evaluated after heat treatment. The changes in the morphology, chemical bonding, and adhesion properties were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and a 90° peel test. The results showed that both the peel strength and thermal resistance of the FCCL increased as the Cr ratio of the seed layer increased. The roughness of the fracture surface decreased as the heat treatment temperature and holding time increased. The heat treatment of the FCCL increased the proportion of C–N bonds and reduced that of the C–O and carbonyl (C=O) bonds in the polyimide. The chemical function and roughness of the fracture surface were affected by the composition and ratio of the seed layer. Therefore, the adhesion strength between the metal and polyimide was mostly attributed to the chemical interaction between the metal layer and the functional groups of the polyimide.  相似文献   

14.
The problem of designing a water quality monitoring network for river systems is to find the optimal location of a finite number of monitoring devices that minimizes the expected detection time of a contaminant spill event while guaranteeing good detection reliability. When uncertainties in spill and rain events are considered, both the expected detection time and detection reliability need to be estimated by stochastic simulation. This problem is formulated as a stochastic discrete optimization via simulation (OvS) problem on the expected detection time with a stochastic constraint on detection reliability; and it is solved with an OvS algorithm combined with a recently proposed method called penalty function with memory (PFM). The performance of the algorithm is tested on the Altamaha River and compared with that of a genetic algorithm due to Telci, Nam, Guan and Aral (2009) Telci, I. T., K. Nam, J. Guan, and M.M. Aral, 2009. “Optimal Water Quality Monitoring Network Design for River Systems.” Journal of Environmental Management, 90 (3–4): 29872998. doi: 10.1016/j.jenvman.2009.04.011[Crossref], [PubMed], [Web of Science ®] [Google Scholar].  相似文献   

15.
16.
Infectious diseases that kill their hosts may persist locally only if transmission is appropriately balanced by susceptible recruitment. Great apes die of Ebola virus disease (EVD) and have transmitted ebolaviruses to people. However, understanding the role that apes and other non-human primates play in maintaining ebolaviruses in Nature is hampered by a lack of data. Recent serological findings suggest that few non-human primates have antibodies to EVD-causing viruses throughout tropical Africa, suggesting low transmission rates and/or high EVD mortality (Ayouba A et al. 2019 J. Infect. Dis. 220, 1599–1608 (doi:10.1093/infdis/jiz006); Mombo IM et al. 2020 Viruses 12, 1347 (doi:10.3390/v12121347)). Here, stochastic transmission models of EVD in non-human primates assuming high case-fatality probabilities and experimentally observed or field-observed parameters did not allow viral persistence, suggesting that non-human primate populations are highly unlikely to sustain EVD-causing infection for prolonged periods. Repeated introductions led to declining population sizes, similar to field observations of apes, but not viral persistence.  相似文献   

17.
We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties.  相似文献   

18.
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell–cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid–solid or solid–fluid interfaces, peeling at fluid–fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction–diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.  相似文献   

19.
A peel test device was used to monitor metal-polymer adhesion. This technique showed variations in the resulting force within 1%, and enabled the ranking of many systems. A change in the 50 nm-adhesion layer resulted in a variation of the fracture energy by a factor 2.3. A change of the substrate led to a change in adhesion by a factor 40. The peeling results were also combined with attenuated total reflectance Fourier transform infra-red measurements to provide qualitative insight of the bonds at the substrate surface. Differences were also visible after surface pretreatment by plasma or sputter etching with different gases, as changes in interaction bonds as well as in adhesion were observed.  相似文献   

20.
Parylene can be coated on stainless steel substrates with and without γ-methacryloxypropyltrimethoxysilane (γ-MPS) as an adhesion promoter. In order to study the effects of silane (γ-MPS) on the adhesion and mixed-mode interfacial fracture performance between parylene C and 316L stainless steel, this paper presents the results of a combined experimental and theoretical approach. Atomic force microscopy (AFM) was used to obtain pull-off forces between parylene coated AFM tips with or without γ-MPS and 316L substrates. A combination of adhesion theories and fracture mechanics models was then used to obtain estimates of the fracture energy release rates over a wide range of mode mixities between pure mode I and pure mode II. The trends in the estimates were shown to be in good agreement with experimental measurements of interfacial fracture toughness obtained from Brazil nut tests coated with parylene C in the presence or absence of γ-MPS over the same range of mode mixities. The study determined that the contribution of silane to the adhesion of parylene C to 316L steel was modest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号