首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A central question in movement research is how animals use information and movement to promote encounter success. Current random search theory identifies reorientation patterns as key to the compromise between optimizing encounters for both nearby and faraway targets, but how the balance between intrinsic motor programmes and previous environmental experience determines the occurrence of these reorientation behaviours remains unknown. We used high-resolution tracking and imaging data to describe the complete motor behaviour of Caenorhabditis elegans when placed in a novel environment (one in which food is absent). Movement in C. elegans is structured around different reorientation behaviours, and we measured how these contributed to changing search strategies as worms became familiar with their new environment. This behavioural transition shows that different reorientation behaviours are governed by two processes: (i) an environmentally informed ‘extrinsic’ strategy that is influenced by recent experience and that controls for area-restricted search behaviour, and (ii) a time-independent, ‘intrinsic’ strategy that reduces spatial oversampling and improves random encounter success. Our results show how movement strategies arise from a balance between intrinsic and extrinsic mechanisms, that search behaviour in C. elegans is initially determined by expectations developed from previous environmental experiences, and which reorientation behaviours are modified as information is acquired from new environments.  相似文献   

2.
We present a novel method for the unsupervised discovery of behavioural motifs in larval Drosophila melanogaster and Caenorhabditis elegans. A motif is defined as a particular sequence of postures that recurs frequently. The animal''s changing posture is represented by an eigenshape time series, and we look for motifs in this time series. To find motifs, the eigenshape time series is segmented, and the segments clustered using spline regression. Unlike previous approaches, our method can classify sequences of unequal duration as the same motif. The behavioural motifs are used as the basis of a probabilistic behavioural annotator, the eigenshape annotator (ESA). Probabilistic annotation avoids rigid threshold values and allows classification uncertainty to be quantified. We apply eigenshape annotation to both larval Drosophila and C. elegans and produce a good match to hand annotation of behavioural states. However, we find many behavioural events cannot be unambiguously classified. By comparing the results with ESA of an artificial agent''s behaviour, we argue that the ambiguity is due to greater continuity between behavioural states than is generally assumed for these organisms.  相似文献   

3.
4.
The ultimate survival of humanity is dependent upon colonization of other planetary bodies. Key challenges to such habitation are (patho)physiologic changes induced by known, and unknown, factors associated with long-duration and distance space exploration. However, we currently lack biological models for detecting and studying these changes. Here, we use a remote automated culture system to successfully grow an animal in low Earth orbit for six months. Our observations, over 12 generations, demonstrate that the multi-cellular soil worm Caenorhabditis elegans develops from egg to adulthood and produces progeny with identical timings in space as on the Earth. Additionally, these animals display normal rates of movement when fully fed, comparable declines in movement when starved, and appropriate growth arrest upon starvation and recovery upon re-feeding. These observations establish C. elegans as a biological model that can be used to detect changes in animal growth, development, reproduction and behaviour in response to environmental conditions during long-duration spaceflight. This experimental system is ready to be incorporated on future, unmanned interplanetary missions and could be used to study cost-effectively the effects of such missions on these biological processes and the efficacy of new life support systems and radiation shielding technologies.  相似文献   

5.
Undulatory locomotion of micro-organisms through geometrically complex, fluidic environments is ubiquitous in nature and requires the organism to negotiate both hydrodynamic effects and geometrical constraints. To understand locomotion through such media, we experimentally investigate swimming of the nematode Caenorhabditis elegans through fluid-filled arrays of micro-pillars and conduct numerical simulations based on a mechanical model of the worm that incorporates hydrodynamic and contact interactions with the lattice. We show that the nematode''s path, speed and gait are significantly altered by the presence of the obstacles and depend strongly on lattice spacing. These changes and their dependence on lattice spacing are captured, both qualitatively and quantitatively, by our purely mechanical model. Using the model, we demonstrate that purely mechanical interactions between the swimmer and obstacles can produce complex trajectories, gait changes and velocity fluctuations, yielding some of the life-like dynamics exhibited by the real nematode. Our results show that mechanics, rather than biological sensing and behaviour, can explain some of the observed changes in the worm''s locomotory dynamics.  相似文献   

6.
This study aims to investigate functional disparity in the locomotor apparatus of bipedal archosaurs. We use reconstructions of hindlimb myology of extant and extinct archosaurs to generate musculoskeletal biomechanical models to test hypothesized convergence between bipedal crocodile-line archosaurs and dinosaurs. Quantitative comparison of muscle leverage supports the inference that bipedal crocodile-line archosaurs and non-avian theropods had highly convergent hindlimb myology, suggesting similar muscular mechanics and neuromuscular control of locomotion. While these groups independently evolved similar musculoskeletal solutions to the challenges of parasagittally erect bipedalism, differences also clearly exist, particularly the distinct hip and crurotarsal ankle morphology characteristic of many pseudosuchian archosaurs. Furthermore, comparative analyses of muscle design in extant archosaurs reveal that muscular parameters such as size and architecture are more highly adapted or optimized for habitual locomotion than moment arms. The importance of these aspects of muscle design, which are not directly retrievable from fossils, warns against over-extrapolating the functional significance of anatomical convergences. Nevertheless, links identified between posture, muscle moments and neural control in archosaur locomotion suggest that functional interpretations of osteological changes in limb anatomy traditionally linked to postural evolution in Late Triassic archosaurs could be constrained through musculoskeletal modelling.  相似文献   

7.
Disease dilution (reduced disease prevalence with increasing biodiversity) has been described for many different pathogens. Although the mechanisms causing this phenomenon remain unclear, the disassembly of communities to predictable subsets of species, which can be caused by changing climate, land use or invasive species, underlies one important hypothesis. In this case, infection prevalence could reflect the competence of the remaining hosts. To test this hypothesis, we measured local host species abundance and prevalence of four generalist aphid-vectored pathogens (barley and cereal yellow dwarf viruses) in a ubiquitous annual grass host at 10 sites spanning 2000 km along the North American West Coast. In laboratory and field trials, we measured viral infection as well as aphid fecundity and feeding preference on several host species. Virus prevalence increased as local host richness declined. Community disassembly was non-random: ubiquitous hosts dominating species-poor assemblages were among the most competent for vector production and virus transmission. This suggests that non-random biodiversity loss led to increased virus prevalence. Because diversity loss is occurring globally in response to anthropogenic changes, such work can inform medical, agricultural and veterinary disease research by providing insights into the dynamics of pathogens nested within a complex web of environmental forces.  相似文献   

8.
We investigated the planar covariation of lower limb segment elevation angles during bipedal walking in macaques to elucidate the mechanisms underlying the origin and evolution of the planar law in human walking. Two Japanese macaques and four adult humans walking on a treadmill were recorded, and the time course of the elevation angles at the thigh, shank and foot segments relative to the vertical axis were calculated. Our analyses indicated that the planar law also applies to macaque bipedal walking. However, planarity was much lower in macaques, and orientations of the plane differed between the two species because of differences in the foot elevation angle. The human foot is rigidly structured to form a longitudinal arch, whereas the macaque''s foot is more flexible and bends at the midtarsal region in the stance phase. This difference in midfoot flexibility between the two species studied was the main source of the difference in the planar law. Thus, the evolution of a stable midfoot in early hominins may have preceded the acquisition of the strong planar intersegmental coordination and possibly facilitated the subsequent emergence of habitual bipedal walking in the human lineage.  相似文献   

9.
Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or ‘retrodict’, compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data.  相似文献   

10.
In this paper, we examine the mechanical properties of muscles in a soft-bodied arthropod under both passive and stimulated conditions. In particular, we examine the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, and show that its response is qualitatively similar to the behaviour of particle-reinforced rubber. Both materials are capable of large nonlinear elastic deformations, show a hysteretic behaviour and display stress softening during the first few cycles of repeated loading. The Manduca muscle can therefore be considered as different elastic materials during loading and unloading and is best described using the theory of pseudo-elasticity. We summarize the basic equations for transversely isotropic pseudo-elastic materials, first for general deformations and then for the appropriate uniaxial specialization. The constitutive relation proposed is in good agreement with the experimental data for both the passive and the stimulated conditions.  相似文献   

11.
Whirligig beetles (Coleoptera: Gyrinidae) are semi-aquatic insects with a morphology and propulsion system highly adapted to their life at the air–water interface. When swimming on the water surface, beetles are subject to both fluid resistance and wave resistance.The purpose of this study was to analyse swimming speed, leg kinematics and the capillarity waves produced by whirligig beetles on the water surface in a simple environment. Whirligig beetles of the species Gyrinus substriatus were filmed in a large container, with a high-speed camera. Resistance forces were also estimated.These beetles used three types of leg kinematics, differing in the sequence of leg strokes: two for swimming at low speed and one for swimming at high speed. Four main speed patterns were produced by different combinations of these types of leg kinematics, and the minimum speed for the production of surface waves (23 cm s−1) corresponded to an upper limit when beetles used low-speed leg kinematics. Each type of leg kinematics produced characteristic capillarity waves, even if the beetles moved at a speed below 23 cm s−1. Our results indicate that whirligig beetles use low- and high-speed leg kinematics to avoid maximum drag and swim at speed corresponding to low resistances.  相似文献   

12.
Unusually for invertebrates, linguliform brachiopods employ calcium phosphate mineral in hard tissue formation, in common with the evolutionarily distant vertebrates. Using solid-state nuclear magnetic resonance spectroscopy (SSNMR) and X-ray powder diffraction, we compare the organic constitution, crystallinity and organic matrix–mineral interface of phosphatic brachiopod shells with those of vertebrate bone. In particular, the organic–mineral interfaces crucial for the stability and properties of biomineral were probed with SSNMR rotational echo double resonance (REDOR). Lingula anatina and Discinisca tenuis shell materials yield strikingly dissimilar SSNMR spectra, arguing for quite different organic constitutions. However, their fluoroapatite-like mineral is highly crystalline, unlike the poorly ordered hydroxyapatite of bone. Neither shell material shows 13C{31P} REDOR effects, excluding strong physico-chemical interactions between mineral and organic matrix, unlike bone in which glycosaminoglycans and proteins are composited with mineral at sub-nanometre length scales. Differences between organic matrix of shell material from L. anatina and D. tenuis, and bone reflect evolutionary pressures from contrasting habitats and structural purposes. The absence of organic–mineral intermolecular associations in brachiopod shell argues that biomineralization follows different mechanistic pathways to bone; their details hold clues to the molecular structural evolution of phosphatic biominerals, and may provide insights into novel composite design.  相似文献   

13.
Riverine fish are subjected to heterogeneous flow velocities and turbulence and may use this to their advantage by selecting regions that balance energy expenditure for station holding while maximizing energy gain through feeding opportunities. This study investigated microhabitat selection by guppies Poecilia reticulata in terms of flow characteristics generated by hemisphere boulders in an open channel flume. Velocity and turbulence influenced the variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the areas of high-velocity and low-turbulence regions beside the boulders, whereas smaller guppies frequented the low-velocity and high-turbulence regions directly behind the boulders. Male guppies selected the regions of low velocity, indicating possible reduced swimming ability owing to hydrodynamic drag imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish spent more time in regions with moderate velocity and lowest turbulent kinetic energy which were the most spatially and temporally homogeneous in terms of velocity and turbulence. These findings highlight the importance of heterogeneous flow conditions in river channel design owing to the behavioural variability within a species in response to velocity and turbulence.  相似文献   

14.
The colours of birds are diverse but limited relative to the colours they can perceive. This mismatch may be partially caused by the properties of their colour-production mechanisms. Aside from pigments, several classes of highly ordered nanostructures (thin films, amorphous three-dimensional arrays) can produce a range of colours. However, the variability of any single nanostructural class has rarely been explored. Dabbling ducks are a speciose clade with substantial interspecific variation in the iridescent coloration of their wing patches (specula). Here, we use electron microscopy, spectrophotometry, polarization and refractive index-matching experiments, and optical modelling to examine these colours. We show that, in all species examined, speculum colour is produced by a photonic heterostructure consisting of both a single thin-film of keratin and a two-dimensional hexagonal lattice of melanosomes in feather barbules. Although the range of possible variations of this heterostructure is theoretically broad, only relatively close-packed, energetically stable variants producing more saturated colours were observed, suggesting that ducks are either physically constrained to these configurations or are under selection for the colours that they produce. These data thus reveal a previously undescribed biophotonic structure and suggest that both physical variability and constraints within single nanostructural classes may help explain the broader patterns of colour across Aves.  相似文献   

15.
Gonorrhoea continues to be a public health problem in the UK, and is the second most common bacterial sexually transmitted infection (STI) after chlamydia. In the UK, gonorrhoea is disproportionately concentrated in epidemiologically distinct subpopulations, with much higher incidence rates in young people, some ethnic minorities and inner city subpopulations. The original model of STI transmission proposed by Hethcote and Yorke explained some of these features through the concept of the ‘core group’. Since then, several authors have modified the original model approach to include multiple sexual activity classes, but found this modelling approach to be inadequate when applied to low-prevalence settings such as the UK. We present a metapopulation framework for modelling gonorrhoea and other STIs. The model proposes that the epidemiology of gonorrhoea is largely driven by subpopulations with higher than average concentrations of individuals with high sexual risk activity. We show how this conceptualization of gonococcal epidemiology overcomes key limitations associated with some of the prior efforts to model gonorrhoea. We also use the model to explain several epidemiological features of gonorrhoea, such as its asymmetric distribution across subpopulations, and the contextual risk experienced by members of at-risk subpopulations. Finally, we extend the model to explain the distribution of other STIs, using chlamydia as an example of a more ubiquitous bacterial STI.  相似文献   

16.
PVT relations in liquid and solid T2 near the melting curve were measured over 20.5 K–22.1 K and 0 MPa–7 MPa (0 bar–70 bar) with a cell that used diaphragms for pressure and volume variation and measurement. Because of ortho-para self conversion, the melting pressure Pm and the liquid molar volume Vlm increased with time. The rates were consistent with a second order reaction similar to that for c the J = odd concentration: dc/dt = ?k1c2k2c(1 ? c), where k1 = 6−9×l0−2h−1. By extrapolation, the ortho and para forms differed by ΔPm~6 bar and ΔVlm~0.5%. Measurements of the volume change on melting and the thermal expansion and compressibility for liquid T2 were consistent with those for H2 and D2. Impurities such as H2, HT, DT, and 3He were removed by a technique using an adsorption column of cold activated alumina. Corrections for 3He growth during an experiment were adequate except near the triple point.  相似文献   

17.
Phenotypic and genetic variation in bacteria can take bewilderingly complex forms even within a single genus. One of the most intriguing examples of this is the genus Neisseria, which comprises both pathogens and commensals colonizing a variety of body sites and host species, and causing a range of disease. Complex relatedness among both named species and previously identified lineages of Neisseria makes it challenging to study their evolution. Using the largest publicly available collection of bacterial sequence data in combination with a population genetic analysis and experiment, we probe the contribution of inter-species recombination to neisserial population structure, and specifically whether it is more common in some strains than others. We identify hybrid groups of strains containing sequences typical of more than one species. These groups of strains, typical of a fuzzy species, appear to have experienced elevated rates of inter-species recombination estimated by population genetic analysis and further supported by transformation experiments. In particular, strains of the pathogen Neisseria meningitidis in the fuzzy species boundary appear to follow a different lifestyle, which may have considerable biological implications concerning distribution of novel resistance elements and meningococcal vaccine development. Despite the strong evidence for negligible geographical barriers to gene flow within the population, exchange of genetic material still shows directionality among named species in a non-uniform manner.  相似文献   

18.
It is a long debated question whether catalytic activities of enzymes, which lie on the millisecond timescale, are possibly already reflected in variations in atomic thermal fluctuations on the pico- to nanosecond timescale. To shed light on this puzzle, the enzyme human acetylcholinesterase in its wild-type form and complexed with the inhibitor huperzine A were investigated by various neutron scattering techniques and molecular dynamics simulations. Previous results on elastic neutron scattering at various timescales and simulations suggest that dynamical processes are not affected on average by the presence of the ligand within the considered time ranges between 10 ps and 1 ns. In the work presented here, the focus was laid on quasi-elastic (QENS) and inelastic neutron scattering (INS). These techniques give access to different kinds of individual diffusive motions and to the density of states of collective motions at the sub-picoseconds timescale. Hence, they permit going beyond the first approach of looking at mean square displacements. For both samples, the autocorrelation function was well described by a stretched-exponential function indicating a linkage between the timescales of fast and slow functional relaxation dynamics. The findings of the QENS and INS investigation are discussed in relation to the results of our earlier elastic incoherent neutron scattering and molecular dynamics simulations.  相似文献   

19.
A fundamental assumption of today''s molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering.  相似文献   

20.
Stochastic fluctuations in the transmission process of microparasites generate a risk of parasite extinction that cannot be assessed by deterministic models, especially in host populations of small size. While this risk of extinction represents a strong selection pressure for microparasites, it is usually not clearly separated from the deterministic ones. We suggest here that this stochastic selection pressure can affect the selection of the transmission mode of microparasites. To avoid extinction, parasites should maximize their inter-population transmission to ensure frequent reintroductions. Since the types of contacts may differ if congeners belong to the same or distinct populations, strains that are mainly transmitted through inter-population contacts might be selected. To examine this assumption, we analyse the issue of the competition between two strains differing in their transmission mode using a stochastic metapopulation model in which hosts may display different behaviours inside and outside their populations. We show that stochastic selection pressures may drive parasite evolution towards a transmission mode that maximizes the persistence of the parasite. We study the conditions under which stochastic selection pressures may surpass the deterministic ones. Our results are illustrated by the cases of feline immunodeficiency virus in cats and of sexually transmitted diseases in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号