首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benomyl (a non-thio fungicide) inhibits hepatic mitochondrial low-Km aldehyde dehydrogenase (mALDH or ALDH2) in ip-treated mice by 50% (IC50) at 7.0 mg/kg, which is surprisingly the same potency range as that for several dithiocarbamate fungicides (and the related alcohol abuse drug disulfiram) and thiocarbamate herbicides previously known for their alcohol-sensitizing action. The mechanism by which benomyl inhibits mALDH was therefore examined, first by comparing the metabolism of benomyl with the aforementioned mono- and dithiocarbamates and second by evaluating the inhibitory potency of the benomyl metabolites. Benomyl in ip-treated mice is converted, via butyl isocyanate, S-(N-butylcarbamoyl)glutathione, and S-(N-butylcarbamoyl)cysteine, to S-methyl N-butylthiocarbamate (MBT), identified as a transient metabolite in liver. MBT is >10-fold more potent than benomyl or butyl isocyanate as an in vivo mALDH inhibitor and is also more potent than the intermediary S-(N-butylcarbamoyl) conjugates. Benomyl and MBT inhibit mouse hepatic mALDH in vitro with IC50s of 0.77 and 8.7 microM, respectively. The potency of MBT is greatly enhanced by fortification of the mitochondria with NADPH alone or plus microsomes giving IC50s of 0.50 and 0.23 microM, respectively. This activation of MBT is almost completely blocked by the cytochrome P450 inhibitor N-benzylimidazole but not by several other cytochrome P450 inactivators. MBT (probably following bioactivation) inhibits mALDH in vivo with an IC50 of 0.3 mg/kg. Two candidate activation products were synthesized for potency determinations. N-Hydroxy MBT (prepared via the trimethylsilyl derivative) was not detected as an MBT metabolite; its low potency also rules against N-hydroxylation as the activation process. MBT sulfoxide, from oxidation of MBT with magnesium monoperoxyphthalate in water, is one of the most potent inhibitors known for mALDH and yeast ALDH in vitro (IC50 0.08-0.09 microM). These findings are consistent with a six-step bioactivation of benomyl, via the metabolites above and N-butylthiocarbamic acid, with MBT as the penultimate and MBT sulfoxide as the ultimate inhibitor of mALDH.  相似文献   

2.
S-Methyl N,N-diethylthiolcarbamate sulfoxide (DETC-MeSO) and sulfone (DETC-MeSO2) both inhibit rat liver low Km aldehyde dehydrogenase (ALDH2) in vitro and in vivo (Nagendra et al., Biochem Pharmacol 47: 1465-1467, 1994). DETC-MeSO has been shown to be a metabolite of disulfiram, but DETC-MeSO2 has not. Studies were carried out to further investigate the inhibition of ALDH2 by DETC-MeSO and DETC-MeSO2. In an in vitro system containing hydrogen peroxide and horseradish peroxidase, the rate of DETC-MeSO oxidation corresponded to the rate of DETC-MeSO2 formation. Carbamoylation of GSH by both DETC-MeSO and DETC-MeSO2 was observed in a rat liver S9 fraction. Carbamoylation of GSH was not observed in the presence of N-methylmaleimide. In in vitro studies, DETC-MeSO and DETC-MeSO2 were equipotent ALDH2 inhibitors when solubilized mitochondria were used, but DETC-MeSO was approximately four times more potent than DETC-MeSO2 in intact mitochondria. In studies with rats, the dose (i.p. or oral) required to inhibit 50% ALDH2 (ED50) was 3.5 mg/kg for DETC-MeSO and approximately 35 mg/kg for DETC-MeSO2, approximately a 10-fold difference. Furthermore, maximum ALDH2 inhibition occurred 1 hr after DET(-MeSO administration, whereas maximal ALDH2 inhibition occurred 8 hr after DETC-MeSO2 dosing. DETC-MeSO is, therefore, not only a more potent ALDH2 inhibitor than DETC-MeSO2 in vivo, but also in vitro when intact mitochondria are utilized. The in vitro results thus support the in vivo findings. Since oxidation of DETC-MeSO can occur both enzymatically and non-enzymatically, it is possible that DETC-MeSO2 is formed in vivo. DETC-MeSO2, however, is not as effective as DETC-MeSO in inhibiting ALDH2, probably because it has difficulty penetrating the mitochondrial membrane. Thus, even if DETC-MeSO2 is formed in vivo from DETC-MeSO, it is the metabolite DETC-MeSO that is most likely responsible for the inhibition of ALDH2 after disulfiram administration.  相似文献   

3.
Abiraterone (17-(3-pyridyl)androsta-5,16-dien-3beta-ol, 1) is a potent inhibitor (IC50 4 nM for hydroxylase) of human cytochrome P45017alpha. To assist in studies of the role of the 16,17-double bond in its mechanism of action, the novel 17alpha-(4-pyridyl)androst-5-en-3beta-ol (5) and 17beta-(3-pyridyl)-16,17alpha-epoxy-5alpha-androst-3beta-ol (6) were synthesized. 3beta-Acetoxyetienic acid was converted in three steps into 5 via photolysis of the thiohydroxamic ester 8. Oxidation of an appropriate 16,17-unsaturated precursor (21) with CrO3-pyridine afforded the acetate (23) of 6. Inhibition of the enzyme by 1, the similarly potent 5,6-reduced analogue 19 (IC50 5 nM), and the 4, 16-dien-3-one 26 (IC50 3 nM) and by the less potent (IC50 13 nM) 3,5, 16-triene 25 is slow to occur but is enhanced by preincubation of the inhibitor with the enzyme. Inhibition following preincubation with these compounds is not lessened by dialysis for 24 h, implying irreversible binding to the enzyme. In contrast under these conditions the still potent (IC50 27 nM) 17alpha-(4-pyridyl)androst-5-en-3beta-ol (5) showed partial reversal after 5 h of dialysis and complete reversal of inhibition after 24 h. This behavior was also shown by the less potent 16,17-reduced 3-pyridyl compounds 3 and 24. Further, in contrast to the compounds (1, 19, 25, 26) with the 16,17-double bond, the inhibition of the enzymic reaction was not enhanced by preincubation either with 5 or with the 17beta-pyridyl analogues 3, 4, and 24 which also lack this structural feature. The results show that the 16,17-double bond is necessary for irreversible binding of these pyridyl steroids to cytochrome P45017alpha. However oxidation to an epoxide is probably not involved since epoxide 6 was only a moderately potent inhibitor (IC50 260 nM).  相似文献   

4.
The triterpene betulinic acid inhibits the activity of aminopeptidase N (EC 3.4.11.2) in a dose-dependent manner. An IC50 of 7.3 +/- 1.4 microM was determined for betulinic acid. This inhibitory activity is higher than that of bestatin' (IC50 = 16.9 +/- 4.1 microM), a well known inhibitor of this enzyme. The finding supports the idea that betulinic acid acts as anti-melanoma agent via inhibition of aminopeptidase N activity.  相似文献   

5.
The HIV-1 protease inhibitor ritonavir (ABT-538) undergoes cytochrome P450-mediated biotransformation in human liver microsomes to three major metabolites, Ml, M2 and M11, with wide interindividual variation in the rates of metabolite formation. The structures of these metabolites were determined with the use of electrospray ionization mass spectrometry. Chemical inhibition, metabolic correlation, immunoinhibition and metabolism by microsomes derived from specific CYP cDNA-transfected B-lymphoblastoid cell lines indicated that the CYP3A subfamily of enzymes was the major contributor to the formation of M1 and M11, whereas both CYP3A and CYP2D6 contributed to the formation of M2. None of the typical CYP3A substrates/inhibitors (e.g., ketoconazole, troleandomycin) were able to completely inhibit ritonavir metabolism, even at high concentrations. Ritonavir was found to be a potent inhibitor of CYP3A-mediated biotransformations (nifedipine oxidation, IC50) = 0.07 microM; 17alpha-ethynylestradiol 2-hydroxylation, IC50 = 2 microM; terfenadine hydroxylation, IC50 = 0.14 microM). Ritonavir was also found to be an inhibitor of the reactions mediated by CYP2D6 (IC50 = 2.5 microM) and CYP2C9/10 (IC50 = 8.0 microM). The results of this study indicate the potential for in vivo inhibition of the metabolism by ritonavir of drugs that are CYP3A, CYP2D6 and, to a lesser extent, CYP2C9/10 substrates.  相似文献   

6.
A library of compounds were prepared by reacting 2-(bromomethyl)-1, 2-benzisothiazol-3(2H)-one 1,1-dioxide (5) with commercially available carboxylic acids in the presence of potassium carbonate or a tertiary amine base. From this library, (1,1-dioxido-3-oxo-1, 2-benzisothiazol-2(3H)-yl)methyl N-[(phenylmethoxy)carbonyl]-beta-alanate (7b) emerged as a potent inhibitor of human mast cell tryptase (IC50 = 0.85 microM). Extension of the side chain of 7b by two carbons gave (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl 5-[[(phenylmethoxy)carbonyl]amino]pentanoate (7d) which was an 8-fold more potent inhibitor (IC50 = 0.1 microM). Further modification of this series produced benzoic acid derivative (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl 4-[[(phenylmethoxy)carbonyl]amino]benzoate (7n) which is the most potent inhibitor identified in this series (IC50 = 0.064 microM). These compounds exhibit time-dependent inhibition consistent with mechanism-based inhibition. For 7b, the initial enzyme velocity is not a saturable function of the inhibitor concentration and the initial Ki could not be determined (Ki > 10 microM). The steady-state rate constant, Ki, was determined to be 396 nM. On the other hand, compounds 7d and 7n are time-dependent inhibitors with a saturable initial complex. From these studies, an initial rate constant, Ki, for 7d and 7n was found to be 345 and 465 nM, respectively. The steady-state inhibition constants, Ki, for 7d and 7n were calculated to be 60 and 52 nM, respectively. Compound 7n is a 13-fold more potent inhibitor than 7b, and these kinetic studies indicate that the increase in inhibitory activity is due to an increase in initial affinity toward the enzyme and not an increase in chemical reactivity. These inhibitors generally show high selectivity for tryptase, being 40-fold weaker inhibitors of elastase, being 100-fold weaker against trypsin, and showing no inhibition against thrombin. These compounds are not inhibitors of thrombin, plasmin t-PA, urokinase, and factor Xa (IC50 > 33 microM). In the delayed-type hypersensitivity (DTH) mouse model, a model of skin inflammation, a 5% solution of 7d reduced edema by 69% compared to control animals.  相似文献   

7.
Four 1-[(benzofuran-2-yl)methyl]imidazoles (1-4) have been evaluated as in-vitro inhibitors of human testicular and bovine adrenal microsomal 17 alpha-hydroxylase: 17,20-lyase (P450 17) as potential anti-prostatic agents. Their specificity towards other steroidogenic and liver enzymes has been compared with that of ketoconazole. All four compounds were inhibitors of the testicular enzyme (2, IC50 (concentration resulting in 50% inhibition) 0.185 microM; 4, IC50 0.18 microM) but less potent than ketoconazole (IC50 0.03 microM). Towards bovine adrenal enzyme 2 and 4 were 35- and 31-fold more potent than ketoconazole (IC50 = 39.8 microM). Compound 2 is a useful lead compound but although less potent than ketoconazole towards P450SCC and P450 11 beta, but not P450C21, at the enhanced dose required for equivalent effects in-vivo on P450 17 it is likely that cortisol and aldosterone production will be affected to a greater extent than with ketoconazole.  相似文献   

8.
A series of eight new N-hydroxy-N'-aminoguanidine (HAG) Schiff bases [ArCH = NNHC(= NH)NHOH.tosylate] was synthesized as potential antitumor agents through the inhibition of the enzyme ribonucleotide reductase (EC 1.17.4.1). Five of the HAG derivatives (LK02 through LK06) were designed to contain an orthohydroxy group on the phenyl ring of ArCH = to increase the stability of the Schiff base formed. In addition, two compounds with a substituted quinoline [LK10; ArCH = (4-hydroxy-7-trifluoromethylquinolin-3-yl)methylene] or isoquinoline (LK11; ArCH = (5-nitroisoquinolin-1-yl)methylene] moiety were synthesized through multiple-step reactions involving reduction and/or oxidation. The IC50 values of the newly synthesized HAG Schiff bases were determined against human leukemic CCRF-CEM/0 cells in culture. The IC50 values of two previously reported HAG derivatives [ATL25; ArCH = (5-nitro-isoquinolin-1-yl)methylene] and [LW02; ArCH = 2-hydroxy-3-allyl-benzylidene)] were also determined for the first time against CCRF-CEM/0 cells. Among the compounds tested, LK11 was found to be the most potent (IC50, 2.95 +/- 0.1 microM) and the 4-methoxy-2-hydroxyphenyl derivative (LK02) to be the least potent (IC50, 121 +/- 16 microM). LK11 was about 15-fold more potent against CCRF-CEM/0 cells compared to the parent compound hydroxyguanidine sulfate (IC50, 46 +/- 7.1 microM) and was about 32 times more potent than LK10 (IC50, 97.6 +/- 0.9 microM). LK11 in combination was incubated in sequence with cytarabine (ara-C) at various molar ratios against CCRF-CEM/0 cells for 48 hr. The results were analyzed using both the isobologram and the median-effect methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
MyristoylCoA: protein N-myristoyltransferase (NMT) catalyzes the cotranslational covalent attachment of a rare cellular fatty acid, myristate, to the N-terminal Gly residue of a variety of eukaryotic proteins. The myristoyl moiety is often essential for expression of the biological functions for these proteins. Attachment of C14:0 alone provides barely enough hydrophobicity to allow stable association with membranes. The partitioning of N-myrisotylproteins is therefore often modulated by "switches" that function through additional covalent or noncovalent modifications. Candida albicans, the principal cause of systemic fungal infection in immunocompromised humans, contains a single NMT gene that is essential for its viability. The functional properties of the acylCoA binding site of human and C. albicans NMT are very similar. However, there are distinct differences in their peptide binding sites. An ADP ribosylation factor (Arf) is included among the few cellular protein substrates of the fungal enzyme. Alanine scanning mutagenesis of an octapeptide derived from an N-terminal Arf sequence (GLYASKLS-NH2) disclosed that Gly1, Ser5, and Lys6 play predominant roles in binding. ALYASKLS-NH2 is an inhibitor competitive for peptide [Ki(app) = 15.3 +/- 6.4 microM] and noncompetitive for myristoylCoA. Remarkably, replacement of the N-terminal tetrapeptide with an 11-aminoundecanoyl group results in a competitive inhibitor (11-aminoundecanoyl-SKLS-NH2) that is approximately 40-fold more potent [Ki(app) = 0.40 +/- 0.03 microM] than the starting octapeptide. Removal of Leu-Ser from the C-terminus generates a competitive dipeptide inhibitor (11-aminoundecanoyl-SK-NH2) with a Ki(app) of 11.7 +/- 0.4 microM, equivalent to that of the starting octapeptide. A derivative dipeptide inhibitor containing a C-terminal N-cyclohexylethyl lysinamide moiety has the advantage of being more potent (IC50 = 0.11 +/- 0.03 microM) and resistant to digestion by cellular carboxypeptidases. Rigidifying the flexible aminoundecanoyl chain results in very potent general NMT inhibitors (IC50 = 40-50 nM). Substituting a 2-methylimidazole for the N-terminal amine and adding a benzylic alpha-methyl group with R stereochemistry to the rigidifying element produces even more potent inhibitors (IC50 = 20-50 nM) that are up to 500-fold selective for the fungal compared to human enzyme. A related less potent member of this series of compounds is fungistatic. Its growth inhibitory effects are associated with a reduction in cellular protein N-myristoylation, judged using cellular Arf as a reporter. These studies establish that NMT is a new antifungal target.  相似文献   

10.
Estrogens have a beneficial effect on atherosclerosis and osteoporosis after menopause, but their exact mechanism of action is still unknown. The aim of the present study was to investigate the effects of estradiol and its metabolites catechol estrogens on arachidonic acid metabolism in vitro. Estradiol had no effect on arachidonic acid metabolism up to 33 microM in A23187-stimulated human whole blood. All catechol estrogens (2-hydroxyestradiol, 2-hydroxyestrone, 4-hydroxyestradiol and 4-hydroxyestrone) had similar kinds of actions on arachidonic acid metabolism, being over ten times more potent inhibitors of leukotriene synthesis (IC50 values 0.044-0.16 microM) than thromboxane (IC50 values 0.99-2.1 microM) and prostaglandin E2 synthesis (IC50 values 0.84-5.5 microM). It is suggested that some of the protective actions of estrogens--e.g., on atherosclerosis and osteoporosis--may be related to the inhibition of leukotriene synthesis by catechol estrogens.  相似文献   

11.
A hexane extract of Plantago major was investigated by bioactivity-directed fractionation, using an in vitro cyclooxygenase-2 (COX-2) catalyzed prostaglandin biosynthesis inhibition assay, and resulted in the isolation of ursolic acid (1). This triterpenoid showed a significant COX-2 inhibitory effect, directly on the enzyme activity, with an IC50 value of 130 microM and a COX-2/COX-1 selectivity ratio of 0.6. The structural isomer oleanolic acid (2) was found to be less active than 1, with an IC50 value of 295 microM, but showed a similar selectivity ratio (0.8). Furthermore, no significant inhibition on COX-2 or COX-1 was observed by the triterpenoid, 18beta-glycyrrhetinic acid (3). The direct inhibitory effect of 1 and 2 on COX-2 catalyzed prostaglandin biosynthesis increased with preincubation, indicating a time-dependent inhibition, while the effect on COX-1 was found to be independent of preincubation time.  相似文献   

12.
The endogenous cannabimimetic anandamide is hydrolyzed by a fatty acid amide hydrolase to yield arachidonic acid and ethanolamine. In the present study, the regional distribution of the activity and its sensitivity to inhibition by the enantiomers of ibuprofen, ketorolac, and flurbiprofen has been investigated. The rate of [3H]anandamide hydrolysis was found in both 7-week-old and 90-week-old rats to be in the order hippocampus > cerebral cortex > cerebellum > striatum approximately midbrain, with higher rates of hydrolysis for the 7-week-old rats than for the 90-week-old rats. In whole brain (minus cerebellum), the R(-)-enantiomer of ibuprofen was a mixed-type inhibitor of anandamide hydrolysis and was approximately 2-3 times more potent than the S(+)-enantiomer, IC50 values of 230 and 750 microM, respectively, being found. A similar pattern of inhibition of anandamide hydrolysis was seen when intact C6 rat glioma cells were used. Ketorolac inhibited rat brain anandamide hydrolysis, with IC50 values of 50, 440, and 80 microM being found for the R-, S-, and R,S-forms, respectively. The IC50 value for R-flurbiprofen (60 microM) was similar to the IC50 value for the S-enantiomer (50 microM). These data demonstrate that there is no dramatic enantiomeric selectivity of NSAID compounds as inhibitors of fatty acid amide hydrolase enzyme(s) responsible for the hydrolysis of anandamide. The enantiomers of flurbiprofen and R-ketorolac are the most potent NSAID inhibitors of fatty acid amide hydrolase yet reported.  相似文献   

13.
The synthesis of a series of pyridothienopyrimidines and their evaluation as inhibitors or inducers of the release of histamine from rat mast cells is reported. The activity was measured after immunological stimulation with ovoalbumin and chemical stimulation with polymer 48/80 and the drugs adryamicin and vinorelbine. The experiments were carried out with and without preincubation of the stimulus with the cells before addition of the drug. Several pyridothienopyrimidines show inhibitory IC50 values in the range 2-25 microM, indicating they are up to 100 times more potent than cromoglycate (DSCG) and 10 times greater than Ketotifen. Compound 9l is a potent inhibitor in all the conditions tested and shows IC50 = 9-25 microM. Pyridothienopyrimidines 4l and 9e are very strong inducers of histamine release in the immunological (4l, 170-230%) and chemical (9e, 100-150%) assays, respectively. Compounds 4l and 9i are cytotoxic in vitro (IC50 = 0.1-0.2 microgram/mL) against P-388, A-549, HT-29, and MEL-28 tumor cell lines.  相似文献   

14.
N-(Carboxyalkyl)maleimides were synthesized as potential inhibitors of prostaglandin endoperoxide synthase (PGHS). Inactivation of the cyclooxygenase and peroxidase activities of PGHS occurred in a biphasic manner with extremely rapid inactivation followed by slow, time-dependent inactivation. The carboxylic acid moiety was required for rapid inactivation. Optimal inhibition was observed with N-(carboxyheptyl)maleimide, which inhibited the cyclooxygenase activity of ovine PGHS-1 with an IC50 of 0.1 microM and the peroxidase activity with an IC50 of 3 microM. Inactivation of peroxidase activity was not prevented by pretreating the enzyme with the cyclooxygenase inhibitor indomethacin. N-(Carboxyheptyl)-succinimide inhibited neither enzyme activity, suggesting that covalent modification is critical for rapid as well as time-dependent inactivation. Shortening or increasing the alkyl chain by one methylene unit drastically reduced inhibitory potency. N-(Carboxyalkyl)maleimides also instantaneously inactivated the inducible form of PGHS (PGHS-2) from mouse and human sources but with higher IC50's (4.5 and 14 microM, respectively). N-(Carboxyheptyl)maleimide is the most potent covalent inactivator of PGHS yet described with an inhibitory potency 3-5 orders of magnitude greater than aspirin.  相似文献   

15.
Cytosolic phospholipase A2 (cPLA2) catalyzes the selective release of arachidonic acid from the sn-2 position of phospholipids and is believed to play a key cellular role in the generation of arachidonic acid. When assaying the human recombinant cPLA2 using membranes isolated from [3H]arachidonate-labeled U937 cells as substrate, 3,3-Dimethyl-6-(3-lauroylureido)-7-oxo-4-thia-1-azabicyclo[3,2,0] heptane-2-carboxylic acid (1) was found to inhibit the enzyme in a dose-dependent manner (IC50 = 72 microM). This beta-lactam did not inhibit other phospholipases, including the human nonpancreatic secreted phospholipase A2. The inhibition of cPLA2 was found not to be time-dependent. This, along with the observation that the degradation of the inhibitor was not catalyzed by the enzyme, demonstrates that the inhibition does not result from the formation of an acyl-enzyme intermediate with the active site serine residue. Moreover, the ring-opened form of 1 is also able to inhibit cPLA2 with near-equal potency. To further characterize the mechanism of inhibition, an assay in which the enzyme is bound to vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol containing 6-10 mole percent of 1-palmitoyl-2-[1-14C]-arachidonoyl-sn-glycero-3-phosphocholine was employed. With this substrate system, the dose-dependent inhibition was defined by kinetic equations describing competitive inhibition at the lipid/water interface. The apparent dissociation constant for the inhibitor bound to the enzyme at the interface (KI*app) was determined to be 0.5 +/- 0.1 mole% versus an apparent dissociation constant for the arachidonate-containing phospholipid of 0.4 +/- 0.1 mole%. Thus, 1 represents a novel structural class of inhibitors of cPLA2 which partitions into the phospholipid bilayer and competes with the phospholipid substrate for the active site.  相似文献   

16.
The antihypertensive agent diltiazem (DTZ) impairs hepatic drug metabolism by inhibition of cytochrome P450 (CYP). The accumulation of DTZ metabolites in serum occurs during prolonged therapy and leads to decreased DTZ elimination. Thus, DTZ metabolites may contribute to CYP inhibition. This study assessed the role of human CYPs in microsomal DTZ oxidation and the capacity of DTZ metabolites to inhibit specific CYP activities. DTZ N-demethylation varied 10-fold in microsomal fractions from 17 livers (0.33-3.31 nmol/mg of protein/min). DTZ oxidation was correlated with testosterone 6beta-hydroxylation (r = 0.82) and, to a lesser extent, tolbutamide hydroxylation (r = 0.59) but not with activities mediated by CYP1A2 or CYP2E1. CYP3A4 in lymphoblastoid cell microsomes catalyzed DTZ N-demethylation but CYP2C8 and CYP2C9 were also active (approximately 20% and 10% of the activity supported by CYP3A4); seven other CYPs produced little or no N-desmethyl DTZ from DTZ. The CYP3A4 inhibitors ketoconazole and troleandomycin decreased microsomal DTZ oxidation, but inhibitors or substrates of CYP2C, CYP2D and CYP2E1 produced no inhibition. Some inhibition was produced by alpha-naphthoflavone, a chemical that inhibits CYP1As and also interacts with CYP3A4. In further experiments, the capacities of DTZ and three metabolites to modulate human CYP 1A2, 2E1, 2C9 and 3A4 activities were evaluated in vitro. DTZ and its N-desmethyl and N,N-didesmethyl metabolites selectively inhibited CYP3A4 activity, whereas O-desmethyl DTZ was not inhibitory. The IC50 value of DTZ against CYP3A4-mediated testosterone 6beta-hydroxylation (substrate concentration, 50 microM) was 120 microM. The N-desmethyl (IC50 = 11 microM) and N,N-didesmethyl (IC50 = 0.6 microM) metabolites were 11 and 200 times, respectively, more potent. From kinetic studies, N-desmethyl DTZ and N,N-didesmethyl DTZ were potent competitive inhibitors of CYP3A4 (Ki = approximately 2 and 0.1 microM, respectively). CYP3A4 inhibition was enhanced when DTZ and N-desmethyl DTZ underwent biotransformation in NADPH-supplemented hepatic microsomes in vitro, supporting the contention that inhibitory metabolites may be generated in situ. These findings suggest that N-demethylated metabolites of DTZ may contribute to CYP3A4 inhibition in vivo, especially under conditions in which N-desmethyl DTZ accumulates, such as during prolonged DTZ therapy.  相似文献   

17.
1. The effects of the protein kinase C inhibitor, Ro 31-8220, on the responses of cultured bovine adrenal chromaffin cells to nicotine, phorbol 12, 13-dibutyrate (PDBu) and K+ have been investigated. 2. Tyrosine hydroxylase activity was measured in situ in intact cells by measuring 14CO2 evolved following the hydroxylation and rapid decarboxylation of [14C]-tyrosine offered to the cells. Secretion of endogenous adrenaline and noradrenaline was measured by use of h.p.l.c. with electrochemical detection. Cyclic AMP levels were measured in cell extracts by RIA. 3. Ro 31-8220 produced a concentration-dependent inhibition of 300 nM PDBu-stimulated tyrosine hydroxylase activity with an IC50 of < 2 microM and complete inhibition at 10 microM. It had no effect on the responses to forskolin. 4. Ro 31-8220 produced a concentration-dependent inhibition of 5 microM nicotine-stimulated tyrosine hydroxylase activity, adrenaline and noradrenaline secretion and cellular cyclic AMP levels, with an IC50 of about 3 microM and complete inhibition by 10 microM. At concentrations up to 10 microM, Ro 31-8220 had little or no effect on the corresponding responses to 50 mm K+. 5. A structural analogue of Ro 31-8220, bisindolylmaleimide V, that lacks activity as a protein kinase C inhibitor, had no effect up to 10 microM on PDBu-stimulated tyrosine hydroxylase activity or on nicotine-stimulated cyclic AMP levels or noradrenaline secretion and only marginal inhibitory effects on nicotine-stimulated tyrosine hydroxylase activity and adrenaline secretion. 6. A structurally related protein kinase C inhibitor, bisindolylmaleimide I, inhibited PDBu-stimulated tyrosine hydroxylase activity with an IC50 of < 1 microM and complete inhibition by 3 microM, but had essentially no effect on nicotine stimulated tyrosine hydroxylase activity or catecholamine secretion. 7. The results suggest that Ro 31-8220 is not only a protein kinase C inhibitor but is also a potent inhibitor of nicotinic receptor responses in adrenal chromaffin cells by a mechanism unrelated to protein kinase C inhibition. The results are consistent with Ro 31-8220 being a nicotinic receptor antagonist.  相似文献   

18.
Culture supernatants of Candida albicans were examined for factors with inhibitory activity against the chemiluminescence of human neutrophils. By high resolution gel chromatography, a low-molecular-mass chemiluminescence inhibitor was isolated. The compound was identified as 2,4-(hydroxyphenyl)-ethanol. Half-maximum inhibition (IC50) of the chemiluminescence response of neutrophils phagocytizing opsonized zymosan or C. albicans occurred at 38.1 +/- 2.3 microM and 19.9 +/- 8.3 microM, respectively. As shown by flow cytometry, the compound protected C. albicans against phagocytic killing (IC50 = 73.8 +/- 16.9 microM). Substantially higher concentrations of the inhibitor were produced by C. albicans and C. tropicalis than by C. parapsilosis and C. glabrata, suggesting a potential role in pathogenicity ranking.  相似文献   

19.
1. The effect of the phenolic compounds protocatechuic acid, chlorogenic acid, tannic acid, gallates and silybin on ethoxyresorufin O-dealkylase (CYP1A1), methoxyresorufin O-dealkylase (CYP1A2) and pentoxy-O-dealkylase (CYP2B) was examined in mouse liver microsomes from induced animals. 2. All compounds tested could inhibit cytochrome P450-mediated enzyme activities, but to different extents. Tannic acid was the most potent inhibitor, especially toward EROD activity with an IC50=2.6 microM. Synthetic dodecyl gallate was also relatively selective toward this enzyme activity with an IC50=120 microM. 3. Protocatechuic acid, chlorogenic and silybin were more selective towards PROD and MROD activities. Their relative inhibitory potency for PROD activity was as follows: chlorogenic acid > protocatechuic acid > silybin > dodecyl gallate > propyl gallate. Protocatechuic acid was a more effective inhibitor of MROD activity than chlorogenic acid, and propyl gallate more effective than dodecyl gallate. Thus, no clear structure-activity or selectivity relationship was observed. 4. Analysis of the kinetics of inhibition revealed that the inhibition in most cases was non-competitive in nature.  相似文献   

20.
Phosphoserine phosphatase (EC 3.1.1.3) catalyzes the final step in the major pathway of L-serine biosynthesis in brain. This enzyme may also regulate the levels of glycine and D-serine, the known and putative co-agonists for the glycine site of the N-methyl-D-aspartate receptor in caudal and rostral brain regions, respectively. Using L-phosphoserine as substrate, the rank order potency for inhibition of phosphoserine phosphatase was p-chloromercuriphenylsulfonic acid (CMPSA) > glycerophosphorylcholine > hexadecylphosphocholine > or = phosphorylcholine > N-ethylmaleimide > or = L-serine > fluoride > D-2-amino-3-phosphonopropionic acid (D-AP3). Glycerylphosphorylcholine (IC50 18 microM) was found to be an uncompetitive inhibitor of phosphoserine phosphatase. Glycerylphosphorylcholine probably binds a novel site on the enzyme since the known allosteric inhibitor L-serine is highly selective for its feedback regulatory site, indicated by the inactivity of 25 L-serine analogs. Fluoride ion (IC50 770 microM) may bind the active site as has been shown for other Mg2+-dependent enzymes. The sulfhydryl reagent CMPSA is a potent, noncompetitive inhibitor of the enzyme using L-phosphoserine as substrate (IC50 9 microM) but is > 300-fold less potent using D-phosphoserine as substrate. Substrate-dependent differences are also observed with the sulfhydryl alkylator N-ethylmaleimide, which inhibits L-phosphoserine, but stimulates D-phosphoserine hydrolysis. These sulfhydryl reagents may dissociate multimeric forms of the enzyme to form monomers; the multimeric forms and monomers may preferentially cleave L- and D-phosphoserine, respectively. Phosphorylcholine esters and sulfhydryl reagents may prove useful in determining the contribution of phosphoserine phosphatase to the biosynthesis of glycine and D-serine in neuronal tissue in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号