首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rao  G. Ananda  Siler  Kathleen  Larkin  Edward C. 《Lipids》1978,13(5):356-359
Male Sprague-Dawley rats were fed for 8 weeks a corn oil (CO) diet or a hydrogenated coconut oil (HCNO) diet. These diets were fed in the absence or presence of eicosa-5,8,11,14-tetraynoic acid (TYA). The inclusion of TYA in the HCNO diet reduced the levels of 12∶0 and 14∶0 in the total fatty acids of livers and plasma. With either diet, the presence of TYA caused an alteration in the fatty acid composition of these tissues so as to reduce the values of the ratios: 16∶1/16∶0, 18∶1/18∶0, and 20∶4/18∶2. These results suggest that dietary TYA can influence the hepatic metabolism of medium chain fatty acids and that it may inhibit the desaturase enzyme involved in the synthesis of not only 20∶4 but also of monoenoic fatty acids.  相似文献   

2.
Wahle  K. W. J.  Radcliffe  J. D. 《Lipids》1977,12(2):135-139
Aspects of the lipid metabolism of male, obese and lean Zucker rats were compared using animals which had been fed ad libitum for 32 days on a diet (HS) which contained 200 g sunflowerseed oil/kg or one (LS) which contained 50 g/kg of the oil. When compared with the LS diet, the HS diet decreased the characteristic lipid accretion in the liver of obese rats from 126 mg (LS) to 81 mg (HS)/g wet weight; corresponding values for the lean rats were 39 mg and 56 mg/g wet weight of liver, respectively. The HS diet depressed lipid synthesis de novo by liver homogenates and decreased the Δ9-desaturase activity of liver microsomes from obese and clean rats by about 50%. Δ9-Desaturase activity in vitro was also depressed by the addition of linoleic acid to liver microsomes from both obese and lean rats fed ad libitum on a standard laboratory diet. Depressed Δ9-desaturase activity, due to ingestion of the HS diet, was reflected in lower ratios of 16∶1/16∶0 and 18∶1/18∶0 fatty acids in tissue lipids from obese and lean rats. Ingestion of the HS compared with the LS diet resulted in increased proportions of 18∶2ω6 in liver lipids and adipose tissue triacylglycerols of obese and lean rats. The HS diet also increased the proportions of 20∶4ω6 in adipose triacylglycerols of obese and lean rats and in liver lipids of obese animals but not in their lean littermates.  相似文献   

3.
Normal and hepatoma bearing rats were fed a low level of methyl 2-hexadecynoate in a low fat diet for one month. The effect of the acetylenic acid on lipid metabolism as derived from mass analysis of lipid classes, fatty acids and positional monoene isomers isolated from the major lipid classes of liver and hepatoma has been assessed. Methyl 2-hexadecynoate caused a 25% decrease in body weight and the appearance of essential fatty acid deficiency symptoms within one week. Non-tumor-bearing animals contained a seven-fold increase in all neutral lipid classes, except cholesterol, while host animals did not contain fatty livers. The apparent protective effect of the host animal by the hepatoma also resulted in only marginal changes in the fatty acid and positional monoene isomers from host liver and hepatoma lipids. In contrast to host liver and hepatoma, methyl 2-hexadecynoate caused a massive accumulation of palmitate and hexadecenoates with a concomitant decrease in stearate and octadecenoates in most of the lipid classes from non-tumor-bearing animals. These changes were accompanied by a shift from the higher molecular weight triglycerides to lower molecular weights corresponding to carbon number 48. The high concentrations of hexadecenoates consisted predominantly of the Δ9 isomer. Despite the high concentrations ofcis Δ9 hexadecenoate, precursor ofcis Δ11 octadecenoate (vaccenate), total vaccenate levels of the five major lipid classes were lower than control values. All of these data strongly suggest that long-chain 2-ynoic acids inhibit elongation of saturated and monoene fatty acids.  相似文献   

4.
Male weanling rats were fed semi-synthetic diets high in saturated fat (beef tallow) vs high in linoleic acid (safflower oil) with or without high levels of α-linolenic acid (linseed oil) for a period of 28 days. The effect of feeding these diets on cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding linseed oil with beef tallow or safflower oil had no significant effect on serum levels of cholesterol. Serum cholesterol concentration was higher in animals fed the safflower oil diet than in animals fed the beef tallow diet without linseed oil. Feeding linseed oil lowered the cholesterol content in liver tissue for all dietary treatments tested. Consumption of linseed oil reduced the arachidonic acid content with concomitant increase in linoleic acid in serum and liver lipid fractions only when fed in combination with beef tallow, but not when fed with safflower oil. Similarly, ω3 fatty acids (18∶3ω3, 20∶5ω3, 22∶5ω3, 22∶6ω3) replaced ω6 fatty acids (20∶4ω6, 22∶4ω6) in serum and liver lipid fractions to a greater extent when linseed oil was fed with beef tallow than with safflower oil. The results suggest that the dietary ratio of linoleic acid to saturated fatty acids or of 18∶3ω3 to 18∶2ω6 may be important to determine the cholesterol and arachidonic acid lowering effect of dietary α-linolenic acid.  相似文献   

5.
Comparative effects of feeding dietary linoleic (safflower oil) and α-linolenic (linseed oil) acids on the cholesterol content and fatty acid composition of plasma, liver, heart and epididymal fat pads of rats were examined. Animals fed hydrogenated beef tallow were used as isocaloric controls. Plasma cholesterol concentration was lower and the cholesterol level in liver increased in animals fed the safflower oil diet. Feeding the linseed oil diet was more effective in lowering plasma cholesterol content and did not result in cholesterol accumulation in the liver. The cholesterol concentration in heart and the epididymal fat pad was not affected by the type of dietary fatty acid fed. Arachidonic acid content of plasma lipids was significantly elevated in animals fed the safflower oil diet and remained unchanged by feeding the linseed oil diet, when compared with the isocaloric control animals fed hydrogenated beef tallow. Arachidonic acid content of liver and heart lipids was lower in animals fed diets containing safflower oil or linseed oil. Replacement of 50% of the safflower oil in the diet with linseed oil increased α-linolenic, docosapentaenoic and docosahexaenoic acids in plasma, liver, heart and epididymal fat pad lipids. These results suggest that dietary 18∶2ω6 shifts cholesterol from plasma to liver pools followed by redistribution of 20∶4ω6 from tissue to plasma pools. This redistribution pattern was not apparent when 18∶3ω3 was included in the diet.  相似文献   

6.
S. Ruggieri  A. Fallani 《Lipids》1979,14(4):323-333
The lipid composition of Yoshida ascites hepatoma cells was analyzed together with that of ascitic plasma and of livers and blood plasma from host and normal rats. In comparison to normal livers, host livers showed no significant differences in the content of the various lipid classes, but contained a higher percentage of palmitic acid and a lower proportion of arachidonic acid in the major phospholipid classes. In addition, tumor growth induced a marked hypertriglyceridemia in host animals; changes in the concentration of other plasma lipid classes were not statistically significant. The ascitic plasma contained small amounts of lipids mainly constituted by cholesteryl esters and phospholipids. Yoshida hepatoma cells contained less phospholipids in comparison to both host and normal liver, while the increased level of triglycerides and the decrease of free fatty acids were not statistically significant. Hepatoma cells showed appreciable amounts of ether-linked lipids associated in part to neutral lipids (as glyceryl ether diesters) and, in part, to ethanolamine and choline phosphoglycerides. The alkyl groups in GEDE as well as in ethanolamine and choline phosphoglycerides were mainly constituted by C16∶0 and C18∶0 followed by C18∶1. The alk-1-enyl groups in ethanolamine and choline phosphoglycerides were C16∶0 and C18∶0 with only a minor proportion of C18∶1. In comparison to both host and normal liver, Yoshida hepatoma cells showed significant changes in the fatty acid composition of neutral lipids and phospholipids. Some of the major changes consisted of an increase of monoenoic acids associated with a decrease of arachidonic and docosahexaenoic acids in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol.  相似文献   

7.
For eight weeks young male rats were fed diets rich in 18∶2 (stock diet, or 10% corn oil, CO) or those devoid of 18∶2 (fat free, FF, or 10% hydrogenated coconut oil, HCNO). The CO and HCNO diets were fed in the absence or presence of eicosa-5,8,11,14-tetraynoic acid (TYA). When 18∶2 was excluded, an increase in the level of 16∶1, 18∶1 and 20∶3 and a decrease in 18∶2 was observed in the fatty acids of red cells. On feeding TYA, an increase in 18∶2 and in the case of the HCNO+TYA diet, a decrease of 12∶0 and 14∶0 was also observed. In all cases the levels of 20∶4 in erythrocyte fatty acids were similar. Saturated fatty acids were predominant in phosphatidyl choline (PC), lysophosphatidylcholine, (LPC) and sphingomyelin whereas unsaturated acids were predominant in phosphatidyl ethanolamine (PE), (PS), and phosphatidyl inositol (PI). Acids containing three or more double bonds comprised about 90% of the total acids in PI. In all the phospholipids, the characteristic changes in the composition of fatty acids were observed due to the exclusion of 18∶2 from the diet. However, changes due to the feeding of TYA were found only in PC and LPC. In rats fed the 18∶2-rich diet, about 60% of the red cells were discocytes. In those fed the 18∶2-free diet, the level of discocytes decreased to about 23%, and the levels of echinocytes II and III increased. The exclusion of 18∶2 for even a few days decreased the proportion of discocytes. The loss of discoid shape was reversed in a few days by feeding an 18∶2-rich diet. Fatty acid analysis of erythrocytes of rats of the various dietary manipulations showed that the change in the proportion of discocytes followed the change in the level of 18∶2.  相似文献   

8.
Young male rats were fed ad libitum for 8 weeks a low iron fat-free (FF-Fe) diet or a fat-free diet supplemented with iron (FF+Fe). The relative levels of 16∶1 to 16∶0 and 18∶1 to 18∶0 in the total fatty acids of liver and other tissues (plasma, erythrocytes and intestinal mucosa) were considerably decreased because of a lack of dietary iron. In rats fed the FF-Fe diet, the levels of essential fatty acids (18∶2ω6+20∶4ω6) in tissues were 2-to 3-fold greater than in the corresponding tissues of rats fed the FF+Fe diet. Eicosatrienoic acid (20∶3ω9) levels in tissue lipids from rats fed the FF+Fe diet were high (8–16%), whereas they were low (2–5%) in the case of animals fed the FF-Fe diet. The proportion of 20∶4 in total fatty acids of tissues was 2-to 3-fold greater in rats fed the FF-Fe diet than when they were fed the FF+Fe diet. Therefore, the relative levels of 20∶3ω9/20∶4ω6 varied from 1-2.9 in tissue lipids of rats fed the FF+Fe diet, while it varied only from 0.2–0.3 in animals fed the FF-Fe diet. These results suggest that a lack of dietary iron may reduce the synthesis of 16∶1, 18∶1, 20∶3 and 20∶4 and the metabolism of 20∶4.  相似文献   

9.
Male Sprague-Dawley rats were fed for 30 days a high-fat liquid ethanol diet with dihydroxyacetone, pyruvate and riboflavin added as supplements (AMA-). Plasma triglyceride (TG) levels were 6-fold greater in these rats than in those fed and alcohol with without the supplements (AA-). The liver TG content in rats fed the AMA-diet was similar to that of rats fed a control diet (CA-) in which alcohol was replaced with isocaloric amounts of dextrose. Livers of rats fed the AA- diet had 3 times more TG than controls. Alcohol ingestion also enhanced the hepatic content of cholesteryl esters (CE) and phospholipids (PL). These lipids were reduced to levels found in livers of rats fed the control diet (CA-) when dihydroxyacetone, pyruvate and riboflavin were included in the alcohol diet. The fatty acid compositions of TG, CE and PL from livers of rats fed the AMA-diet were similar to those of corresponding lipids from rats fed the control diet (CA-) but differed from compositions when fed the alcohol diet (AA-). Regardless of the diet fed, TG had the same fatty acid composition in plasma and liver. The same was true of PL fatty acid composition. However, the fatty acid composition of CE differed between liver and plasma. The major fatty acid in liver CE was 18∶1 whereas in plasma it was arachidonic acid (20∶4). Reduced fatty liver was observed in an earlier study when rats were fed ad libitum an ethanol diet containing 20∶4. In the present study, we pair-fed the same diet and fatty liver was not reduced. Dihydroxyacetone, pyruvate and riboflavin did not prevent alcohol-induced fatty liver when 20∶4 was included in the AMA-diet. Our results confirm that dietary dihydroxyacetone, pyruvate and riboflavin prevent alcohol-induced fatty liver, and show that this effect may result from increased mobilization of fat from liver.  相似文献   

10.
Obese and lean male Zucker rats were fed ad libitum on diets containing either 50 (L) or 200 (H) g/kg diet of either triolein (T) or sunflowerseed oil (S). The specific activity of the hepatic microsomal Δ9 desaturase enzyme was depressed in both lean and obese rats fed the HS diet compared with the other three diets. The fatty acid composition of liver and subcutaneous white adipose tissue lipids were consistent with a lower Δ9 desaturation activity in rats fed the H diets, particularly for the HS diet. In both genotypes, microsomal Δ9 desaturase activity and the ratio of 16∶1/(16∶0+16∶1) fatty acids in liver lipids were inversely related to the proportion of 18∶2 in liver lipid. Plasma insulin concentrations and rates of glucose-stimulated insulin release in vivo were higher in obese rats compared with lean rats, and plasma insulin levels were higher in rats fed S compared with T. There was no relationship between Δ9 desaturase activity and either plasma insulin concentration or rates of insulin release in vitro. These findings suggest that hepatic Δ9 desaturase activity of Zucker rats is responsive to changes in the proportion of 18∶2 in liver lipids but is not affected by changes in insulin secretion.  相似文献   

11.
The lipid concentration and fatty acid composition of the whole liver and of cultured hepatocytes isolated from the livers of rats fed ad libitum (fed), fasted for 24 hr (fasted), or fasted for 48 hr and then refed a fat-free, high carbohydrate diet for 48 hr (refed) was studied. Hepatocytes were maintained as monolayer cultures in serum-free, lipid-free media and their fatty acid composition was analyzed at 3, 24, 48, 72 and 96 hr. The livers of fed animals, as well as their hepatocytes, contained less total lipid than those from animals on either of the other dietary regimes. Livers of fasted animals had three times the amount of lipid found in the livers of fed animals, and the livers of refed animals contained five times the amount of lipid as the livers of fed animals (all based on mg lipid/g wet weight of liver). The fatty acid composition of hepatocytes after 3 hr of culturing was very similar to that of fresh liver when compared in each of the dietary regimes. However, while the fatty acid compositions of livers and hepatocytes from fed and fasted animals were similar, the pattern in liver of refed animals was quite distinct from that of the fed animals. In the fed and fasted animals palmitic acid (16∶0), stearic acid (18∶0), oleic acid (18∶1[n-9]), linoleic acid (18∶2[n-6]) and arachidonic acid (20∶4[n-6]) were the major fatty acids of the liver; in refed animals 16∶0, palmitoleic acid (16∶1[n-7]), 18∶0, 18∶1(n-9) andcis-vaccenic acid (the n-7 isomer of oleic acid) were the major fatty acids. During maintenance in culture the 18∶1(n-9) content of the hepatocytes increased in cells from livers of animals on all three dietary regimes. The polyunsaturated fatty acid content was similar in fresh livers and isolated hepatocytes in all samples when compared on the basis of μg fatty acid/mg of hepatocyte or liver protein. It was also found that the polyunsaturated fatty acid content of hepatocytes was remarkedly stable with time of culture when the cells were incubated in serum-free, lipid-free medium. Thus, isolated hepatocytes maintained in serum-free medium appear to be a possible system for the evaluation of the effects of prior nutritional status on fatty acid metabolism in the whole animal, not subject to hormonal and other somatic influences which often complicate the interpretation of such nutritional studies.  相似文献   

12.
A study was made of the influence of semisynthetic diets of low and high unsaturation on the fatty acid composition and desaturation-chain elongation enzymatic activity of the liver microsomal fractions of male Sprague-Dawley rats of different ages. Groups of rats were fed 5 or 20% coconut oil (CO), or a 5 or 20% mixture of corn and menhaden oils (3∶7) (CME) from weaning to 100 wk of age. Growth rate and food consumption were measured during this period in which animals were sacrificed at 36, 57, 77 and 100 wk of age. Both the level and composition of the dietary fat supplements produced marked effects on the fatty acid composition of the liver microsomal lipids. In general, the fatty acid composition of the microsomal fractions reflected that of the dietary fat and was more unsaturated with the higher level of fat fed. The rate of conversion of linoleic to arachidonic acid in assays performed in vitro with liver microsomal preparations from animals of the different groups also showed marked differences. The 6-desaturase-chain elongation activity was higher in the 5% than 20% group and corresponded to the essential fatty acid (EFA) status of the animals in these groups as represented by the triene-tetraene ratio of the microsomal lipid. The relationship of the 6-desaturase activity to fatty acid composition of the microsomal lipid indicated that if varied directly with the level of 20∶3ω9, 18∶1 and 16∶1 and was inhibited by arachidonic acid. The activity of the 6-desaturase enzyme system was lowest in the liver microsomal fraction obtained from the animals fed the CME diets and appeared to be suppressed by the high levels of 20∶5 and 22∶6 that accumulated in the microsomal lipid. Accordingly, the levels of arachidonic acid were lower in the microsomal lipid of these groups than those of the corresponding CO groups in spite of a greater abundance of linoleic acid in the diet. The data suggest that the activity of the 6-desaturase-chain elongation system is regulated by the fatty acid composition of the microsomal lipid as influenced by the composition of the dietary fat.  相似文献   

13.
Klaus Eder 《Lipids》1999,34(7):717-725
This study was carried out to investigate the effects of a dietary oxidized oil on lipid metabolism in rats, particularly the desaturation of fatty acids. Two groups of rats were fed initially for a period of 35 d diets containing 10% of either fresh oil or thermally treated oil (150°C, 6d). The dietary fats used were markedly different for lipid peroxidation products (peroxide value: 94.5 vs. 3.1 meq O2/kg; thiobarbituric acid-reactive substances: 230 vs. 7 μmol/kg) but were equalized for their fatty acid composition by using different mixtures of lard and safflower oil and for tocopherol concentrations by individual supplementation with dl-α-tocopherol acetate. In the second period which lasted 16 d, the same diets were supplemented with 10% linseed oil to study the effect of the oxidized oil on the desaturation of α-linolenic acid. During the whole period, all the rats were fed identical quantities of diet by a restrictive feeding system in order to avoid a reduced food intake in the rats fed the oxidized oil. Body weight gains and food conversion rates were only slightly lower in the rats fed the oxidized oil compared to the rats fed the fresh oil. Hence, the effects of lipid peroxidation products could be studied without a distortion by a marked reduced food intake and growth. To assess the rate of fatty acid desaturation, the fatty acid composition of liver and heart total lipids and phospholipids was determined and ratios between product and precursor of individual desaturation reactions were calculated. Rats fed the oxidized oil had reduced ratios of 20∶4n−6/18∶2n−6, 20∶5n−3/18∶3n−3, 20∶4n−6/20∶3n−6, and 22∶6n−3/22∶5n−3 in liver phospholipids and reduced ratios of 20∶4n−6/18∶2n−6, 22∶5n−3/18∶3n−3, and 22∶6n−3/18∶3n−3 in heart phospholipids. Those results suggest a reduced rate of desaturation of linoleic acid and α-linolenic acid by microsomal Δ4-, Δ5-, and Δ6-desaturases. Furthermore, liver total lipids of rats fed the oxidized oil exhibited a reduced ratio between total monounsaturated fatty acids and total saturated fatty acids, suggesting a reduced Δ9-desaturation. Besides those effects, the study observed a slightly increased liver weight, markedly reduced tocopherol concentrations in liver and plasma, reduced lipid concentrations in plasma, and an increased ratio between phospholipids and cholesterol in the liver. Thus, the study demonstrates that feeding an oxidized oil causes several alterations of lipid and fatty acid metabolism which might be of great physiologic relevance.  相似文献   

14.
Rats were fed ethanol and a fat-free diet for 30 days to determine whether dietary fat is needed for the development of fatty liver. The severity of fatty liver was similar to that of rats fed an isocaloric diet with 35% fat. Small amounts (29 mg/day) of dietary arachidonic acid prevented alcoholic fatty liver. Rats fed either the alcohol (AF) or control (CF) fat-free diets developed essential fatty acid deficiency (EFAD) as measured by the triene/tetraene ratio of liver and plasma lipids. Rats fed arachidonic acid (AA, alcohol and CA, control diets) did not develop EFAD. Although EFAD alone did not cause the development of fatty liver, the combination of dietary ethanol and EFAD did. The ratios of 16∶1/16∶0 and 18∶1/18∶0 in liver lipids indicated that desaturase enzymes were less active and lipogenesis was reduced in rats fed the AA diet compared to those fed the AF diet. In contrast, stimulated lipogenesis appears to have been the cause of fatty liver in rats fed the AF diet. Presented at the XII International Congress of Nutrition, San Diego, CA, August 1981. Abbreviations: Diets are indicated as fat-free with ethanol (AF), fat-free without ethanol (CF), or similar diets with 0.9% of the calories as arachidonic acid with (AA) or without (CA) ethanol. The composition of these diets is discribed in the text and Table 1.  相似文献   

15.
Guinea pigs were fed one of three diets containing 10% black currant seed oil (a source of gamma-linolenic (18∶3 n−6) and stearidonic (18∶4 n−3) acids), walnut oil or lard for 40 days. The fatty acid composition of liver triglycerides, free fatty acids, cholesteryl esters, phosphatidylinositol, phosphatidylserine, cardiolipin, phosphatidylcholine and phosphatidylethanolamine were determined. Dietary n−3 fatty acids found esterified in liver lipids had been desaturated and elongated to longer chain analogues, notably docosapentaenoic acid (22∶5 n−3) and docosahexaenoic acid (22∶6 n−3). When the diet contained low amounts of n−6 fatty acids, proportionately more of the n−3 fatty acids were transformed. Significantly more eicosapentaenoic acid (EPA) (20∶5 n−3) was incorporated into triglycerides, cholesteryl esters, phosphatidylcholine and phosphatidylethanolamine of the black currant seed oil group compared with the walnut oil group. Feeding black currant seed oil resulted in significant increases of dihomogamma-linolenic acid (20∶3 n−6) in all liver lipid classes examined, whereas the levels of arachidonic acid (20∶4 n−6) remained relatively stable. The ratio dihomo-gamma-linolenic acid/arachidonic acid was significantly (2.5-fold in PI to 17-fold in cholesteryl esters) higher in all lipid classes from the black currant seed oil fed group.  相似文献   

16.
Walker BL 《Lipids》1967,2(6):497-500
In order to determine to what extent maternal diet influenced the brain lipids of young rats, female rats were maintained on diets differing in fatty acid composition. Fatty acid determinations on the total brain lipids of the young from these dams indicated that the maternal dietary lipids influence the polyunsaturated fatty acid composition of these animals. A maternal diet with a high linoleic-linolenic acid ratio (corn oil) resulted in lower levels of 22∶6ω3 and higher levels of 22∶5ω6 than one with a low linoleic-linolenic acid ratio (grain). Transfer of young rats at birth to a foster mother, which was fed a diet differing from that of the natural dam, resulted in brain polyunsaturated fatty acid patterns at weaning similar to those of the natural young, and suckling, of the foster mother, thus indicating that the maternal diet in the immediate postnatal period can modify the brain lipids of young rats prior to weaning. The brain lipids of young rats from dams which were fed corn oil exhibited a marked tendency to incorporate 22∶6ω3 in the immediate postnatal period in spite of a relatively high linoleic-linolenic acid ratio in the milk.  相似文献   

17.
Studies are reported on the capacity of isolated rat renal papilla (inner medulla) to synthesize and release prostaglandin (PG) E from endogenous and exogenous precursor(s) during development of an essential fatty acid (EFA) deficiency in the rat. Weanling (21-day-old) male Sprague-Dawley rats were fed a fat-free diet supplemented with either 5% hydrogenated coconut oil (HCO) or 5% safflower oil (SO). At approximately 3, 6 and 7 weeks (6, 9 and 10 weeks of age), groups of animals fed each diet were killed for studies of PGE synthesis in the renal papillae. Differences in the fatty acid composition of the papillae lipids of the animals of each group were also determined. The in vitro production of PGE from endogenous precursor(s) was significantly reduced in the papillae from the 6-week-old rats fed the HCO diet compared to the control (SO) rats, and appeared to be near maximally depressed in the 10-week-old animals compared to that of animals fed an EFA deficient diet for over a year in an accessory experiment. Analyses of the fatty acids of the papillae lipids of the HCO groups showed that the levels of 18∶2 and 20∶4 were markedly reduced, and those of 16∶1, 18∶1 and 20∶3 were elevated compared to the controls even in the 6-week-old animals, typical of an EFA deficiency. The papillae lipids of the animals fed the HCO diet were also depleted of their stores of 22∶4ω6. A fatty acid believed to be derived by chain elongation of 20∶3ω9, 22∶3, was found in large concentrations in the papillae triglycerides of the EFA deficient rats. Incubations of exogenous arachidonic acid (20∶4) in homogenates and tissue slices of the papillae of the HCO dietary groups showed that the PG synthetase was not impaired by an EFA deficiency. The rate of PGE synthesis in the papillae of the EFA deficient animals was generally enhanced when exogenous 20∶4 was added, indicating that the concentration of available precursor(s) is a primary factor in the control of PGE synthesis in the papilla of the rat.  相似文献   

18.
Groups of normal and hepatoma (7288CTC) bearing rats were maintained on normal chow and fat-free diets for 4 weeks. Normal liver, host liver, and hepatoma neutral lipids were examined in detail and compared. Water content, unaffected by diet was: hepatoma, 82 percent; host liver, 71 percent; and normal liver, 67 percent. The fat-free diet had no effect upon the hepatoma neutral lipids but elevated the triglyceride level in normal and host liver, shifted the triglyceride carbon number distribution to lower mol wt, and elevated the percentage of monoenoic acids in triglycerides and cholesteryl esters. Host triglyceride concentrations were ca. half, and cholesterol levels were reduced moderately relative to normal liver values. Hepatoma cholesterol levels were higher and triglyceride concentrations lower than normal and host liver values. Hepatoma triglycerides differed dramatically from liver and were characterized by increased concentrations of high mol wt species and a fivefold increase in the percentage of C-20 and C-22 fatty acids. The percentage of C-20 and C-22 fatty acids in hepatoma cholesteryl esters also increased ca. fivefold relative to liver. The data indicate that the systems that regulate triglyceride and cholesteryl ester fatty acid composition in liver do not control the compositions of these lipid classes in this hepatoma. The unchanged high level of essential fatty acids in the hepatoma lipids from the fat-free fed animals demonstrates the hepatoma's ability to absorb and conserve specific fatty acids.  相似文献   

19.
Benny Jensen 《Lipids》1976,11(3):179-188
Weanling rats were fed essential fatty acid-deficient diets, either completely fat-free, or with partially hydrogenated fish oil (PHFO, 28 wt %), or with fractions derived from PHFO containing primarily positional isomers oftrans-eicosenoate (20∶1, 3 wt %) ortrans-docosenoate (22∶1, 3 wt %). Control animals were fed a peanut oil-containing diet (28 wt %). After 5 or 15 weeks on the diet, the content of neutral and phosphorus-containing lipids in the testes was determined. The fatty acid distribution in major lipid classes was analyzed for animals fed the diets for 15 weeks. The testicular stage of maturation or degeneration was assessed by histology. The group fed PHFO exhibited signs of complete testicular degeneration, or lack of maturation, already after 5 weeks, whereas the animals on the diets with the very long chain monoenoic acids suffered severe degenerations only after 15 weeks. In the PHFO-fed rats, a sharp decline in the concentration of testicular triacylglycerols was observed. In all of the essential fatty acid-deficient groups, an increase in testicular sphingomyelin was observed. Cholesterol levels were fairly similar among all dietary groups. The total testicular fatty acids of the PHFO-fed animals contained somewhat more eicosadienoic acid than found in the other groups, and somewhat less (n−9)-acids. In all EFA-deficient groups, (n−6)-acids were lowered, in particular in triacylglycerols and phosphatidyl cholines. The PHFO group did not show a lower (n−6)-concentration than the other deficient groups, in spite of the more severe symptoms of deficiency. There was no evidence of a major accumulation of long chain isomeric fatty acids in the degenerated testes of the PHFO-, 20∶1, and 22∶1-fed groups.  相似文献   

20.
Fish oils rich in n-3 fatty acids have been shown to decrease plasma lipid levels, but the underlying mechanism has not yet been elucidated. This investigation was performed in order to further clarify the effects of purified ethyl esters of eicosapentaenoic acid (EPA-EE) and docosahexaenoic acid (DHA-EE) on lipid metabolism in rats. The animals were fed EPA-EE, DHA-EE, palmitic acid, or corn oil (1 g/kg/d) by orogastric intubation along with a chow background diet for three months. At the end the animals were sacrificed. Plasma and liver lipids were measured, as well as lipid-related enzyme activities and mRNA levels. The fatty acid composition of plasma and different tissues was also determined. This study shows that, compared to the corn oil control, EPA-EE and DHA-EE lowered plasma cholesterol level, whereas only EPA-EE lowered the amount of plasma triacylglycerol. In liver peroxisomes, both EE preparations increased fatty acyl-CoA oxidase FAO activities, and neither altered 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activities. In liver microsomes, EPA-EE raised HMG-CoA reductase and acyl-CoAicholesterol acyltransferase activities, whereas DHA-EE lowered the former and did not affect the latter. Neither product altered mRNA levels for HMG-CoA reductase, low density lipoprotein-receptor, or low density lipoprotein-receptor related protein. EPA-EE lowered plasma triacylglycerol, reflecting lowered very low density lipoprotein secretion, thus the cholesterol lowering effect in EPA-EE-treated rats may be secondary to the hypotriacylglycerolemic effect. An inhibition of HMG-CoA reductase activity in DHA-EE treated rats may contribute to the hypocholesterolemic effect. The present study reports that 20∶5n-3, and not 22∶6n-3, is the fatty acid primarily responsible for the triacylglycerol lowering effect of fish oil. Finally, 20∶5n-3 was not converted to 22∶6n-3, whereas retroconversion of 22∶6n-3 to 20∶5n-3 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号