首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conventional photovoltaic module has been prepared with the purpose of accessing its cells either individually or associated. Measurements of every cell and of the whole module have been performed in direct and reverse bias, with the objective of documenting the scattering in cell parameters, working point of the cells and shading effects. Several shading profiles have been tested, and the influence of the reverse characteristic of the shaded cell in module output is stressed.  相似文献   

2.
Yosef Meller 《Solar Energy》2010,84(11):1967-1974
A method is presented for deriving an algorithm for analytically calculating shading of sun-pointing solar collectors by other identical collectors in the field. The method is particularly suited to regularly-spaced collectors, with convex aperture shapes. Using this method, an algorithm suitable for circular-aperture collectors is derived. The algorithm is validated against results obtained using an existing algorithm, and an example for usage of the algorithm as a tool for validating assumptions of an existing algorithm is presented.  相似文献   

3.
The front-row shading reduction coefficient is a key parameter used to calculate the system efficiency of a photovoltaic(PV) power station. Based on the Hay anisotropic sky scattering model, the variation rule of solar radiation intensity on the surface of the PV array during the shaded period is simulated, combined with the voltage–current characteristics of the PV modules, and the shadow occlusion operating mode of the PV array is modeled. A method for calculating the loss coefficient of front...  相似文献   

4.
We present experimental results on large-area low-cost processed flexible organic photovoltaic (OPV) modules incorporating organic bypass diodes to eliminate the negative effects of shading on the module power output. A fully organic-based structure (organic solar module combined with an organic bypass diode) is essential to allow monolithic interconnection of the bypass diode during the solar module production within the same printing steps. The origin of shading losses in organic photovoltaic modules is analyzed in detail, and guidelines for the design and architecture of flexible OPV modules are derived. Inorganic and organic diodes were tested on their functionality as bypass diodes, and a set of diode specifications to minimize shading losses is summarized. Organic bypass diodes were found to efficiently reduce the adverse shading effects in OPV modules.  相似文献   

5.
Solar power generation using PV (photovoltaic) technology is a key but still evolving technology with the fastest growing renewable-based market worldwide in the last decade. In this sector with tremendous potential for energy security and economic development, grid-connected PV systems are becoming today the most important application of solar PV generation. Based on this trend, PV system designers require an accurate and reliable tool in order to predict the dynamic performance of grid-tied PV systems at any operating conditions. This will allow evaluating the impact of PV generation on the electricity grids. This paper presents a detailed characterization of the performance and dynamic behavior of a grid-connected PV energy conversion system. To this aim, a flexible and accurate PV simulation and evaluation tool (called PVSET 1.0) is developed. The PV system is modeled, simulated and validated under the MATLAB/Simulink environment. The accuracy of simulation results has been verified using a 250 Wp PV experimental set-up.  相似文献   

6.
Large solar photovoltaic array networks have been investigated to find a configuration that is comparatively less susceptible to electrical mismatches due to manufacturer's tolerances in solar cell characteristics and shadow problems. Three network configurations have been selected for comparison: series-parallel, total-crossed-tied and bridge-linked. Explicit mathematical analysis based on randomly generated parameters of solar cell characteristics is presented. Series resistance of the constituent cells has been taken into account. The computational schemes for the array configurations of arbitrary size have been developed and implemented in numerical algorithms and computer programs. The illustrative numerical computations have shown that the bridge-linked array interconnection network under most conditions is superior to and never worse than the total-cross-tied and significantly superior to the series-parallel network in its fault-tolerance due to shadow effects and manufacturer's tolerances in cell characteristics.  相似文献   

7.
Photovoltaic (PV) pumping offers the possibility of supplying water to remote and desert regions for their daily needs. The sizing of the PV pumping systems is a very significant step in order to optimize the power peak of the PV array and to ensure the best choice of the motor, the pump and the inverter. Two mathematical models were proposed in this article to contribute in the studies of PV pumping sizing. These models link directly the operating electrical power to the water flow rate of the pump versus total head. These models are based essentially on the experimentation of pumps on CDER PV pumping test facility. Two pumping systems are tested: the first uses a centrifugal pump and the second uses a positive displacement pump. The results obtained by the models are very satisfactory. Also, the models enabled us to simulate the electrical and hydraulic performances of two tested pumps. The performances are calculated using the measured meteorological data of different sites located in Sahara and coastline regions of Algeria.  相似文献   

8.
The aim of this study is to investigate the effects of non-uniform solar irradiation distribution on energy output of different interconnected configurations in photovoltaic (PV) arrays. In order to find which configuration is less susceptible to mismatch effects, a PV module model is developed. This model can take into consideration the effects of bypass diodes and the variation of the equivalent circuit parameters with respect to operating conditions. The proposed model can provide sufficient degree of precision as well as solar cell-based analysis in analyzing large scale PV arrays without increasing the computational effort. In order to produce more reliable and robust simulations, improved and extended algorithms are presented. Some results are discussed in detail and some recommendations are extracted by testing several shading scenarios.  相似文献   

9.
An important growth in the power of the photovoltaic systems connected to a grid has recently been observed. In spite of the advances in module technology, the problems in the system design increased, especially regarding the surface of the earth they occupy. In this work we propose a complete model for plant simulation with different wiring diagrams and under dynamic shading. Results obtained from simulations showed that the configuration with the lowest performance was that of only one serial-parallel group, whereas the highest efficiency corresponded to a design of groups of modules in parallel connected then in series. In general, a higher efficiency was obtained diminishing the quantity of modules in series and increasing their number in parallel. The simulation model proposed allows exploring different alternatives of wiring modules and finding the most efficient configurations for photovoltaic plants of medium and high power.  相似文献   

10.
This paper presents a method for estimating the loss-of-load probability (LLP) of a photovoltaic water pumping system. The study has been carried out for a constant profile, using a tank with a two day autonomy capacity and two pumping heads applied to a centrifugal pump. The method developed in this paper gives a simple tool for LLP calculation. The procedure can also be used to draw LLP maps with normalised parameters using long term observed or generated sequences of meteorological data. This technique gives a generalised and practical graphical tool for systems sizing. Some examples from Algeria are used. But the method can be applied to any geographical area.  相似文献   

11.
Quantitative information regarding the maximum power point (MPP) of photovoltaic (PV) arrays is crucial for determining and controlling their operation, yet it is difficult to obtain such information through direct measurements. PV arrays exhibit an extremely nonlinear current-voltage (I-V) characteristic that varies with many complex factors related to the individual cells, which makes it difficult to ensure an optimal use of the available solar energy and to achieve maximum power output in real time. Finding ways to obtain the maximum power output in real time under all possible system conditions are indispensable to the development of feasible PV generation systems. The conventional methods for tracking the MPP of PV arrays suffer from a serious problem that the MPP cannot be quickly acquired. Based on the p-n junction semiconductor theory, we develop a prediction method for directly estimating the MPP for power tracking in PV arrays. The proposed method is a new and simple approach with a low calculation burden that takes the resistance effect of the solar cells into consideration. The MPP of PV arrays can be directly determined from an irradiated I-V characteristic curve. The performance of the proposed method is evaluated by examining the characteristics of the MPP of PV arrays depending on both the temperature and irradiation intensity, and the results are discussed in detail. Such performance is also tested using the field data. The experimental results demonstrate that the proposed method helps in the optimization of the MPP control model in PV arrays.  相似文献   

12.
Accurate hourly photovoltaic (PV) output data are useful for engineering design, cost-effectiveness evaluation, rate design, system operation, transmission planning, risk management, and policy analysis. However, a large sample of hourly metered PV data is seldom available, and engineering simulation is often the only practical means to obtain hourly PV output. Based on an analysis of net energy metering (NEM) funded by the California Public Utilities Commission (CPUC), this paper presents statistically adjusted engineering (SAE) modeling of metered output of 327 roof-top PV installations in California for the 12-month period of January–December 2008. The key findings are: (a) the metered PV output is on an average 80–90% of simulated performance; and (b) the simulated data have useful information for accurately predicting metered PV performance. Plausible causes for (a) include incomplete input data for PV simulation, occasional failures in metered data recording, and less than ideal conditions for PV performance in the real world.  相似文献   

13.
Danny H.W. Li  S.L. Wong 《Applied Energy》2007,84(12):1199-1209
Daylighting has long been recognized as a potential energy-efficient design strategy for buildings. Natural light can help reduce the electrical demand and the associated sensible cooling load due to artificial lighting. In Hong Kong, however, many buildings are constructed close to each other and hence the external environment plays a significant role in daylighting designs. This paper investigates the shading effects due to nearby obstructions when daylighting schemes are being employed. We used the computer simulation tool, EnergyPlus, to illustrate the energy performance of a generic commercial building with daylighting controls obstructed by neighbouring buildings of various heights. Analysis of electricity savings was carried out for the perimeter zones of the whole building and individual floors. Regression techniques were conducted to correlate the building energy savings and the angles of obstructions. It was found that the shading effects due to nearby obstructions strongly affect the building energy budget when daylighting designs are used. Building designers should critically consider the external environment in order to achieve energy-efficient building designs.  相似文献   

14.
This paper presents an adaptive artificial neural network (ANN) for modeling and simulation of a Stand-Alone photovoltaic (SAPV) system operating under variable climatic conditions. The ANN combines the Levenberg–Marquardt algorithm (LM) with an infinite impulse response (IIR) filter in order to accelerate the convergence of the network. SAPV systems are widely used in renewable energy source (RES) applications and it is important to be able to evaluate the performance of installed systems. The modeling of the complete SAPV system is achieved by combining the models of the different components of the system (PV-generator, battery and regulator). A global model can identify the SAPV characteristics by knowing only the climatological conditions. In addition, a new procedure proposed for SAPV system sizing is presented in this work. Different measured signals of solar radiation sequences and electrical parameters (photovoltaic voltage and current) from a SAPV system installed at the south of Algeria have been recorded during a period of 5-years. These signals have been used for the training and testing the developed models, one for each component of the system and a global model of the complete system. The ANN model predictions allow the users of SAPV systems to predict the different signals for each model and identify the output current of the system for different climatological conditions. The comparison between simulated and experimental signals of the SAPV gave good results. The correlation coefficient obtained varies from 90% to 96% for each estimated signals, which is considered satisfactory. A comparison between multilayer perceptron (MLP), radial basis function (RBF) network and the proposed LM–IIR model is presented in order to confirm the advantage of this model.  相似文献   

15.
16.
In estimating emissions reductions brought about by renewables in China, much of existing research assumes that renewables displace coal power. In this paper, this assumption is challenged and the potential environmental effects of photovoltaic (PV) power in North-west China are reevaluated when the marginal generator actually being displaced is taken into account. The annual PV power generation in the North-west Grid is estimated, in this paper, to be as high as 17900 GW·h in 2015, roughly equaling to the output of 1.5 nuclear power plants in the US today. The total associated emission reduction in 2015 will at most be 0.36 percent of SO2 and 0.25 percent of NOx emissions from their 2010 levels in China. Further, PV power may render no emissions reduction at all if it displaces hydropower, which is often used to meet peak demand in the North-west Grid in China. These results imply that a more cost-effective area of focus in the short-term may be on desulfurization and denitrification technologies for coal plants.  相似文献   

17.
A. Kovach  J. Schmid 《Solar Energy》1996,57(2):117-124
In this contribution a simulation procedure is described which was developed as a working tool to calculate the energy output of building-integrated photovoltaic (PV) arrays experiencing shading or reflection effects. A three-quadrant solar cell model incorporating the reverse bias characteristics and breakdown voltage is verified by current-voltage (I–V) measurements performed on commercially manufactured mc-Si solar cells under controlled laboratory conditions. For the simulations, a point matrix giving the irradiation distribution over the PV array is calculated for each hour using a raytracing technique. With a raytracing technique, shading of both beam and diffuse irradiation as well as primary and secondary reflections can be modelled. The results of two cases studies simulated using this technique are presented and analysed. In conclusion, general guidelines based on the simulation results are drawn up. These guidelines aim to assist architects and engineers in planning an optimized layout strategy of building-integrated PV arrays to reduce energy losses caused by shading.  相似文献   

18.
This article presents a technique for the design of slat-type blinds based on the their relative light intensity distribution under a uniform light source. The technique offers a new approach using a genetic algorithm in order to evolve the design according to a set of parameters.  相似文献   

19.
A new method for estimating the irradiance on a partially shaded photovoltaic generator system is proposed. The basic principle of this method consists of two parts: firstly, an approximation of the obstacles’ outline or the local horizon by a set of linear functions. Here, a survey of the surroundings is based on the reading of the topographic coordinates of the only significant points of all the objects surrounding the photovoltaic generator. Secondly, the irradiance on the photovoltaic plane is estimated using an accurate model such as the Perez et al. model and assuming that the shading affects both the direct radiation and a part of the diffuse component (circumsolar component).The aim of this paper is to present the principles of the proposed method and the algorithm used for calculating the irradiance on shaded planes. In addition, the results of the comparison between the simulated and measured values of this method are presented.  相似文献   

20.
In this paper, life cycle analysis has been carried out to evaluate overall performance of given rated stand-alone solar photovoltaic (SAPV) in terms of basic energy matrices, life cycle cost analysis, and earned carbon credit. Further, the experimentally calculated actual on-field life cycle performance results of existing outdoor SAPV system (i.e. almost 20 years old) have been represented with respect to the potential (max.) performance of same SAPV system estimated under same environmental conditions of solar intensity, ambient temperature, PV operating temperature as obtained during actual on-field performance evaluation. This new approach of overall performance evaluation by considering the on-field SAPV system installation as new (i.e. with potential/max. performance) and old (i.e. with actual performance) under same environmental conditions provides an inclusive comparative life cycle assessment of on-field PV system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号