首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
常规混凝沉淀工艺对阴离子表面活性剂的去除研究   总被引:8,自引:0,他引:8  
随着阴离子表面活性剂(LAS)在民用和工业上的广泛应用,由此带来的水污染问题也日益加剧,对供水安全造成了很大威胁。针对目前大部分水厂仍采用混凝沉淀常规水处理工艺,考察了常规混凝沉淀工艺对LAS的去除效果。以Al2(SO4)3,PAC,FeCl3,PFS为混凝剂,非离子PAM为助凝剂进行了试验,结果表明混凝沉淀对LAS有一定的去除效果,而且有机物和LAS的去除有一定相关关系。但浊度与LAS的去除相关性较差。试验条件下对于LAS去除最佳混凝方案是投加量为40 mg/L的FeCl3。相同水质条件下铁盐混凝剂在除浊、除有机物和除LAS方面优于铝盐混凝剂。pH和水温对LAS的去除有一定影响,较低的pH和较高的水温均有利于LAS的去除。  相似文献   

2.
In the present study, phosphorus removal was studied using as coagulant spent alum sludge from a water treatment plant of EYDAP (Athens Water Supply and Sewerage Company) and compared to alum (Al2(SO4)3.18H2O), iron chloride (FeCl3.7H2O), iron sulfate (Fe2(S04).10H2O) and calcium hydroxide (Ca(OH)2) at a constant pH (equal to 6).The comparison was based on their efficiency to remove phosphorus in synthetic wastewater consisting of 10 mg/L P as potassium dihydrogen phosphate and 50 mg/L N as ammonium chloride, The experiments were carried out using a jar-test apparatus and the measurements were performed according to the Standard Methods for the Examination of Water and Wastewater. Pure alum, iron chloride and iron sulfate were much more efficient in phosphorus removal than the spent alum sludge but in the case of calcium hydroxide, phosphorus removal was very low in pH = 6. Specifically, orthophosphate were totally removed by alum using 15 mg/L as Al, by alum sludge using 75 mg/L as Al and by FeCl3.7H2O or Fe2(SO4).10H2O using 30 mg/L of Fe while in the case of calcium hydroxide P removal was actually zero. pH measurements showed that the uptake of phosphates is associated to the release of OH ions in the solution and that the end of P uptake is accompanied by the stabilization of pH. Finally this spent alum sludge was tested on municipal wastewater and proved to be effective as apart from phosphorus it was shown to remove turbidity and COD.  相似文献   

3.
In this paper, experimental studies were performed on a simulated reactive dyebath effluent to compare coagulation-flocculation and Fenton's oxidation with electrocoagulation using stainless steel (SS 304) and aluminium electrodes in terms of colour and COD removals as well as AOX formation potential and improvement of biological treatability. Results have indicated that FeCl3 and alum coagulation had little effect on colour removal whereas comparable colour removal efficiencies with those of electrocoagulation with steel electrodes and Fenton's oxidation were attained by FeSO4 coagulation. Almost complete colour removals accompanied with 77% COD abatement were obtained by both electrocoagulation with steel electrodes and Fenton's oxidation under optimised reaction conditions. Although electrocoagulation with aluminium electrodes yielded very limited colour removal and produced a high amount of sludge upon extended reaction time, this application brought about a marked improvement in biodegradability.  相似文献   

4.
An expanded granular sludge bed (EGSB) reactor was adopted to incubate the sludge biogranule that could simultaneously achieve sulfate reduction and sulfide reoxidization to elemental sulfur for treating molasses distillery wastewater. The EGSB reactor was operated for 175 days at 35 °C with a pH value of 7.0, chemical oxygen demand (COD) loading rate of 4.8 kg COD/(m3 d), and sulfate loading rate of 0.384 kg SO(4)(2-)/(m3 d). The optimal operation parameters, including the oxidation reduction potential (ORP), recycling rate, and hydraulic retention time (HRT), were established to obtain stable and acceptable removal efficiencies of COD, sulfate, and higher elemental sulfur production. With an ORP of -440 mV, a recycling rate of 300%, and HRT of 15 h, the COD and sulfate removal efficiencies were 73.4 and 61.3%, respectively. The elemental sulfur production ratio reached 30.1% when the elemental sulfur concentration in the effluent was 48.1 mg/L. The performance results were also confirmed by the mass balance calculation of sulfate, sulfide, and elemental sulfur over the EGSB reactor.  相似文献   

5.
Electrochemical oxidation (decolorization/degradation) of blue and red commercial reactive azo dyes was carried out on boron-doped diamond (BDD) electrode. The effect of various quantities of FeSO(4) was investigated in the electro-Fenton reaction on BDD. Progress of dyes degradation during the electrolysis and electro-Fenton reaction was monitored by UV-visible absorption and by estimation of the chemical oxygen demand (COD). Direct electrolysis showed a limiting capacity for red and blue dye removal even at high current densities, e.g. maximum red color and COD removal were 70 and 20%, respectively at 30 mA cm(-2) after 300 min. Higher red and blue color removal efficiencies were achieved by electro-Fenton oxidation. Current density of 30 mA cm(-2) in the presence of 0.05 mmol/L of FeSO(4) resulted in the red color and COD removal of 98 and 96%, respectively. The optimum FeSO(4) concentration for the electro-Fenton reaction was determined to be 0.05 mmol/L. Instantaneous current efficiency (ICE) in the presence of FeSO(4) was almost three times higher than for experiments carried out without FeSO(4).  相似文献   

6.
聚合铝盐混凝剂混凝除藻机理与强化除藻措施   总被引:2,自引:0,他引:2       下载免费PDF全文
针对微污染水处理中藻细胞的去除,研究聚合氯化铝形态分布对混凝除藻效率的影响。结果表明,混凝剂水解产物中,中等聚合物含量影响混凝过程中藻细胞去除率。中等聚合物含量越大,藻细胞去除率越高;在一定条件下,藻细胞去除率与中等聚合物含量线性相关,混凝出水中残铝含量与单体和低聚物含量线性相关。对聚合氯化铝,中等聚合物含量与碱化度线性相关。适量加聚磷酸根、硅酸根可以提高混凝除藻效率,并能显著降低混凝出水中残铝含量,所阐述的混凝除藻机理可以较好地解释实验现象。  相似文献   

7.
选用聚合氯化铁(PFC)、聚合硫酸铁(PFS)、聚合氯化铝(PAC)和聚合氯化铝铁(PAFC)作为混凝剂;选用阳离子型聚丙烯酰胺(CPAM)、阴离子型聚丙烯酰胺(APAM)和非离子型聚丙烯酰胺(NPAM)作为助凝剂,通过室内试验对比研究强化混凝技术中多种混凝剂单用及其和助凝剂联用对南淝河污染水的除浊和去污效果,并用于南淝河现场构建的混凝沉淀系统。结果表明,4种混凝剂单用时,PAFC对浊度、TP去除效果最优,对CODMn有良好的去除效果,且不影响原水的p H值,而PFC和PFS单用时可明显降低原水p H值,4种混凝剂单用时对TN均没有明显去除效果;PAFC与CPAM联用时对浊度的去除效果最佳,明显优于PAFC与APAM和NPAM联用和PAFC单用的效果;混凝剂与CPAM联用提高了其除浊和去除TP的能力,但不能明显改善其去除CODMn的效果,对原水p H和TN的影响与单用时相同。选取"PAFC+CPAM"作为南淝河示范工程的混凝剂和助凝剂,现场混凝沉淀出水水质稳定,浊度和TP的去除效果较好,去除率分别达到90%和80%,对CODMn的去除率约为52%,而对TN的去除效果有限,去除率约为22.4%。  相似文献   

8.
针对津河水体开展长达18个月的定点采样监测分析,对造成藻华现象的优势藻种进行了显微识别。结果表明,近两年津河水体总体为富营养化状态,其中每年7、8月份藻华暴发,呈现重富营养化特征,经观察鉴别属于微囊藻型蓝藻污染。以Chl-a、浊度及UV254为主要水质参数,探索投加无机混凝剂用于藻污染控制的可行性,并对4种混凝剂的藻污染控制效果进行了比较。结果表明,投加无机混凝剂控制津河藻污染效果显著(聚合氯化铝对Chl-a和浊度去除率分别高达89%和92%),相同实验环境下混凝净化效能依次为:PAC(聚合氯化铝)PFS(聚合硫酸铁)FC(三氯化铁)AS(硫酸铝)。  相似文献   

9.
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.  相似文献   

10.
Four experiments of coagulation and flocculation were conducted to investigate the characteristics of colloidal silica removal in a high-tech industrial wastewater treatment plant for reclamation and reuse of the effluent. Experimental results illustrated that poly-aluminium chloride (PACl) showed higher performances on colloidal silica removal than alum. Interestingly, the two coagulants demonstrated the same capacity on silica removal. The specific silica removal capacity was approximately 0.135 mg SiO2/mg Al2O3 when the dosage of coagulants was in the range 30-150 mg/L Al2O3. In addition, the silica was reduced significantly at the condition of pH above 8. Experimental data implied that precipitation of aluminium flocs was the major mechanism for colloid silica removal in PACl and alum coagulation, besides, charge adsorption was also important for improving removal efficiency. Moreover, the addition of polyacrylic acid (PAA) as a flocculant could slightly advance silica removal in the PACl coagulation. The combined PACl/PAA/flocs coagulation was effective for the removal of colloidal silica, soluble COD, and turbidity and also suitable as a pretreatment unit in wastewater reclamation and reuse processes.  相似文献   

11.
《水科学与水工程》2021,14(3):193-200
This study evaluated the influence of the type and dose of coagulants on the removal of 16 polycyclic aromatic hydrocarbons (PAHs) in the coagulation process. The effects of coagulant type and dose in reducing water turbidity, colour, and the total content of organic compounds were also assessed. The surface water samples had the turbidity of 9.3–11.2 NTU and colour of 25–35 mg/L. The content of organic compounds determined with total organic carbon (TOC) was 9.2–12.5 mg/L. For the coagulation process, pre-hydrolyzed polyaluminium chloride (PACl) coagulants with basicity values of 41%, 65%, and 85% were used. This shows that water purification performance increased as the basicity of the coagulant increased. When the coagulant with the highest basicity and a dose of 3 mg Al per litre was used, a removal efficiency of 83% in the concentration of benzo(a)pyrene was achieved, and efficiencies for the remaining 15 PAHs ranged from 80% to 91%. These values were 4%–9% higher than those achieved using other coagulants. The removal efficiencies of turbidity, colour, and TOC were 80%, 60%, and 35%, respectively. The water purification performance, including PAH removal, was improved with the increased coagulant dose. Increasing the coagulant dose had more pronounced effects on PAH removal than on the reduction of turbidity and TOC.  相似文献   

12.
This study examined the efficiencies of microbubble (MB) treatment, MB treatment with polyaluminium chloride (PAC) as a coagulant, and MB treatment with cetyltrimethylammonium chloride (CTAC) as a cationic surfactant in the separation of emulsified oil (EO) by modified column flotation. Batch mode experiments were conducted by synthesizing emulsified palm oil (d<20 μm), and the chemical oxygen demand (COD) of the influent and effluent was measured to evaluate the treatment performance. MB treatment with PAC and MB treatment with CTAC were found to be more efficient in EO removal than the MB treatment alone. At an EO concentration of ~1,000 mg L(-1) (pH 7) and under identical treatment conditions (MB generation time: 2.5 min, flotation time: 30 min), MB treatment with PAC (50 mg L(-1)) and that with CTAC (0.5 mg L(-1)) showed equally high EO removal efficiencies of 92 and 89%, respectively. This result is of significant relevance to studies focusing on the development of economical and high-efficiency flotation systems. Furthermore, the effect of pH was investigated by varying the sample pH from 3 to 8, which showed that the EO separation efficiency of MB alone increased drastically from slightly alkaline to acidic condition.  相似文献   

13.
The present study investigated mesophilic anaerobic treatment of sulphate-containing wastewater in EGSB reactors and assessed the inclusion of nitrite in the reactor influent as a method for control of biological sulphate reduction. Two EGSB reactors, R1 and R2, were operated for a period of 581 days at varying volumetric loading rates, COD/SO4(2-) ratios and influent nitrite concentrations (R2 only). COD removal efficiencies of > 93% were achieved in both reactors at influent sulphate concentrations of up to 3,000 mg l(-1). A two-fold increase in the influent sulphate concentration, giving an influent COD/SO4(2-) ratio of 2, resulted in a reduction in reactor COD removal efficiency to 84% and 89%, in R1 and R2, respectively. Despite inclusion of nitrite in the R2 influent at concentrations up to 500 mg NO2-N l(-1), sulphate reduction proceeded similarly in R2 and R1, suggesting the ineffectiveness of nitrite as a potential inhibitor of SRB  相似文献   

14.
通过小试考察了聚二甲基二烯丙基氯化铵(PDM)复配硫酸铝(AS)、氯化高铁(FC)、聚氯化铝(PAC)和聚硫酸铁(PFS)以及单独采用PAC处理某水厂春季嘉陵江水源水的效果,选择了复配比例为1:100的PAC-PDM复合混凝剂处理该时期原水。通过对矾花与沉降性能的研究,发现复配比例越低,投药量越少,矾花粒径越小。当矾花粒径达到0.5 mm以上时,矾花的沉降性能较好,且矾花的沉降性能还与矾花的密实程度有很大关系。通过对PAC和PAC-PDM连续生产对比试验研究,在出厂水满足《生活饮用水卫生标准》(GB 5749—2006)要求的情况下,PAC-PDM和PAC的平均投药量分别约为8mg/L和14.3mg/L,在春季该水厂采用PAC-PDM处理嘉陵江原水较单独采用PAC约节省30%混凝剂费用。  相似文献   

15.
The removal of detergents from clarified wastewaters by activated petroleum coke (CAPA) was assessed. These substances, owing to their foamy properties, constitute a problem for ammonia removal by the air stripping process that could be installed in a wastewater treatment train to produce reclaimed water. CAPA was evaluated as a more economical alternative than a commercial activated carbon. Experimental work was divided in three stages: 1) production and characterisation of materials; 2) pretreatment of raw wastewater through the Fenton's reagent or coagulation-flocculation process with Al2(SO4)3; and 3) adsorption and bio-adsorption tests of clarified effluents. These tests were carried out in the laboratory in discontinuous and continuous reactors, the former by the "point-by-point" technique, with and without a previous fixing of bacteria, and the latter by the Rapid Small Scale Column Test. Detergents content, color, COD and UV254nm were measured in raw and treated wastewaters. Results show that the best pretreatment for the adsorption process was coagulation-flocculation rather than Fenton's method. Oxidation by this process decreased the adsorptive properties of detergents. Biomass fixed on the CAPA particles significantly increased the UV254nm and COD removal efficiencies (20% and 170% respectively). The breakthrough curves showed that CAPA could attain the expected detergents removal efficiency (66%) for the alum effluent.  相似文献   

16.
This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.  相似文献   

17.
In this study a poorly biodegradable (BOD/COD = 0.3) industrial alkaline ECF bleaching filtrate was treated using different advanced oxidation processes to evaluate their use in combined chemical-biological treatment aimed at increasing recalcitrant COD removal and improving final effluent quality. Oxidative treatments included ozonation combined with hydrogen peroxide (2, 5, 10, 20 mmol L(-1) O3/0.7, 2, 5, 10 mmol L(-1) H2O2) and photocatalysis with hydrogen peroxide (UV/2, 4 and 8 mmolL(-1) H2O2) and with TiO2 (UV/TiO2/0.7 and 4 mmol L(-1) H2O2). The O3/H2O2 process increased effluent biodegradability by up to 68% as a result of increasing BOD and decreasing COD. Increasing the O3 dose had a greater effect on biodegradability improvement and lignin and colour removal efficiencies than increasing the H2O2 dose. A combined oxidant dose of 5 mmol L(-1) O3 and 2 mmol L(-1) H2O2 resulted in 75% lignin removal, 40% colour removal and 6% carbohydrate loss without mineralizing the organic carbon. The photocatalytic processes led to a decrease in effluent biodegradability through combined decrease in BOD and increase in COD and did not result in efficient lignin or colour removal. Photocatalytic oxidation was apparently inhibited by the high chloride and COD levels in the alkaline filtrate, and may be more efficient in recalcitrant COD removal if performed after biological.  相似文献   

18.
Wine distillery wastewaters (WDW) are acidic and have a high content of potential organic pollutants. This causes high chemical oxygen demand (COD) values. Polyphenols constitute a significant portion of this COD, and limit the efficiency of biological treatment of WDWs. WDW starting parameters were as follows: pH 3.83, 4,185 mg/l soluble COD (COD(s)) and 674.6 mg/l of phenols. During operation, amendments of CaCO3 and K2HPO4, individually or in combination, were required for buffering the digester. Volatile fatty acid concentrations were < 300 mg/l throughout the study, indicating degradation of organic acids present. Mean COD(s) removal efficiency for the 130 day study was 87%, while the mean polyphenol, removal efficiency was 63%. Addition of 50 mg/l Fe(3+) between days 86 and 92 increased the removal efficiencies of COD(s) to 97% and of polyphenols to 65%. Addition of Co(3+) improved removal efficiencies to 97% for COD(s) and 92% for polyphenols. Optimization of anaerobic treatment was achieved at 30% WDW feed strength. Removal efficiencies of 92% and 84% were recorded at increased feed strength from days 108 to 130. High removal efficiencies of COD(s) and polyphenols after day 82 were attributed to the addition of macronutrients and micronutrients that caused pH stability and thus stimulated microbial activity.  相似文献   

19.
Effluents from Baker's yeast production plant contain a high percentage of color and a large amount of organic load. In the present study, Baker's yeast wastewater (BYW) is treated with the electrocoagulation (EC) process using Al electrodes. Operating parameters (pH, current density, color intensity and operating time) are optimized by response surface methodology (RSM). Quadratic models are developed for the responses which are removal efficiencies of color, chemical oxygen demand (COD) and total organic carbon (TOC) and operating cost (OC). Optimum operating parameters and responses are determined as initial pH 5.2, current density of 61.3 A/m(2) and operation time of 33 min, and 71% of color, 24% of COD, 24% of TOC removal efficiencies and OC of 0.869 €/m(3), respectively. The quadratic model fits for all responses very well with R(2) (>0.95). This paper clearly shows that RSM is able to optimize the operating parameters to maximize the color, COD and TOC removal efficiencies and minimize the OC.  相似文献   

20.
采取试验手段,研究在微波条件下用Fenton试剂处理含酚废水的效果,探讨H2O2质量浓度、FeSO4质量浓度、pH值、反应时间和微波功率等因素对稻壳热解发电废水中COD、挥发酚及色度去除率的影响,并进行不同条件下Fenton反应的对比试验。结果表明,在微波条件下,Fenton试剂能快速降解含酚废水,处理后水样的COD去除率超过73%,挥发酚去除率超过99%,色度去除率接近50%。该含酚废水的最佳处理条件是:H2O2质量浓度为1500 mg/L,FeSO4质量浓度为100 mg/L,pH值为3,反应时间为10 min,微波功率为400 W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号