首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
为探究金刚石含量对玻璃/Al_(2)O_(3)复合基板性能的影响,一定条件下,对它们冷压烧结制取试样,利用扫描电镜和X射线衍射仪进行显微结构和组织分析;利用万能抗折试验机、热膨胀系数和孔隙率测试仪测试其物理性能。结果表明:随着金刚石含量增加,复合材料的气孔率、抗弯强度、热导率增大;常数、介电损耗、热膨胀系数随之减小。当金刚石的含量增加到20 wt%时,金刚石/玻璃/Al_(2)O_(3)复合材料的气孔率为29.66%,介电常数值达到最小7.33,介电损耗降低为1.30×10^(-3),抗弯强度达到最大值77.16 MPa,复合材料的热膨胀系数为6.52×10^(-6)/℃,且具有最大的热导率9.66 W/(m·K)。  相似文献   

2.
低温烧结玻璃/陶瓷复合材料的微结构及性能   总被引:1,自引:4,他引:1  
借助钙长石陶瓷和硼酸盐玻璃良好的介电和热膨胀性能,制备了一系列玻璃/陶瓷复合材料,并对这些复合材料进行了X射线衍射分析、扫描电镜观察和性能测试.结果表明:复合材料的介电常数、热膨胀系数和显微硬度随着陶瓷含量的增加而增加,其介电损耗则随陶瓷含量的增加而减小.陶瓷含量(质量分数≥60%)高的复合材料在高于850℃烧结时析出一定量的α-石英和方石英,这增加了材料的热膨胀系数,但对其介电常数影响不大.所制备的复合材料具有高的相对密度(≥96.5%)、低的介电常数(5~6)、低的介电损耗(0.10%~0.42%)、低的热膨胀系数(4.6×10-6~6.5×10-6/℃)和低的烧结温度(≤900℃),有望用作介电材料和基板材料.  相似文献   

3.
以碳热还原法合成的AlN粉末和市售BN粉末为原料, 利用无压烧结工艺制备AlN-BN复合陶瓷, 研究了AlN-BN复合陶瓷结构和性能的关系.结果表明: 随着BN含量的增加, 在复合陶瓷中逐渐形成卡片房式结构, 阻碍材料的收缩和致密, 复合材料的致密度下降, 热导率和硬度也随之下降, 综合考虑热导率和硬度因素, 认为利用常压烧结工艺制备可加工AlN-BN复合陶瓷时, BN质量分数在10%~15%之间是合适的, 可以制备出热导率在100~140 W·m-1·K-1, 硬度HRA在55~75之间的AlN-BN复合陶瓷.  相似文献   

4.
为获得低介电损耗、高耐压强度的Al2O3基低温共烧陶瓷(LTCC)材料,采用固相法制备了x(6La2O3·24CaO·50B2O3·20SiO2)(LCBS)+(1–x)Al2O3玻璃/陶瓷。通过X射线衍射仪、扫描电子显微镜、矢量网络分析仪、高压击穿试验仪、高温介电温谱仪对烧结样品的结构和性能进行了表征。结果表明:添加适量的LCBS玻璃粉有助于提升材料的致密性、降低介电损耗、提高击穿场强。同时,复阻抗谱分析表明,LCBS玻璃的加入可以显著提高玻璃/陶瓷的电阻率和活化能。当玻璃含量(摩尔分数)为44%时,850℃烧结0.5 h,可获得性能优异的LTCC陶瓷材料G44:εr=7.14,Q×f=5 769 GHz(f=13 GHz),Eb=57.44 kV/mm。  相似文献   

5.
采用两组复合烧结助剂Y2O3-CaF2,Y2O3-CaF2-Li2CO3在1600℃烧结AlN陶瓷,对AlN陶瓷烧结密度,热性能和电性能进行了测试,并分析了AlN陶瓷物相变化和微观结构。结果表明,复合烧结助剂在低温下能明显促进AlN陶瓷致密化及晶粒生长发育,尤其是添加3wt%Y2O3-2wt%CaF2作烧结助剂,1600℃常压烧结4h制备了结晶良好,相对密度为98.4%,热导率为133.62W/m.K,同时具有较低相对介电常数的AlN陶瓷。在低温常压条件下制备出性能较高的AlN陶瓷。  相似文献   

6.
以Ca-Ba-Mg-Al-B-Si-O系玻璃和α-Al_2O_3粉料为原料,低温烧结玻璃/Al_2O_3系介电陶瓷材料。设计调控基质玻璃中SiO_2含量,以优化Ca-Ba-Mg-Al-B-Si-O玻璃复合氧化铝材料的烧结与介电性能。结果表明,提高SiO_2含量,玻璃/Al_2O_3材料的烧成收缩率降低,试样烧结温度升高,烧结体介电常数先增加后减小,介电损耗先减小后增加,介电性能转折点出现在SiO_2含量为60 wt%。当SiO_2含量为60 wt%时,复合材料综合性能最好,试样在875℃烧结致密,体积密度为3.10 g·cm~(-3),10 MHz频率下介电常数为8.03,介电损耗为0.0005,因此该体系材料比较适合用作LTCC封装材料。  相似文献   

7.
以碳热还原法合成的AlN粉末和市售BN粉末为原料, 利用无压烧结工艺制备AlN-BN复合陶瓷, 研究了AlN-BN复合陶瓷结构和性能的关系.结果表明: 随着BN含量的增加, 在复合陶瓷中逐渐形成卡片房式结构, 阻碍材料的收缩和致密, 复合材料的致密度下降, 热导率和硬度也随之下降, 综合考虑热导率和硬度因素, 认为利用常压烧结工艺制备可加工AlN-BN复合陶瓷时, BN质量分数在10%~15%之间是合适的, 可以制备出热导率在100~140 W·m-1·K-1, 硬度HRA在55~75之间的AlN-BN复合陶瓷.  相似文献   

8.
采用硅作为熔渗剂,利用真空反应烧结的工艺,在1600℃烧结制得了结构致密、密度低的碳化硅-氮化铝(SiC/AlN)复合材料,分析测试了所制得的复合材料的物相、微观结构和力学性能.结果表明,氮化铝的添加量由2wt%增加到10wt%时,复合材料的力学性能出现先增加后减小的趋势,当AlN含量为6wt%时,得到复合材料的力学性能最高,其抗弯强度为256 MPa,显微硬度为2660 HV.加入AlN后,复合材料的孔隙率略微有点上升,烧结体的密度在2.95 ~3.01 g/cm3之间.复合材料的主要组成相为SiC、AlN和Si.  相似文献   

9.
实验以Ca-Ba-Mg-Al-B-Si-O玻璃与Al_2O_3粉料为原料,设计玻璃与Al_2O_3粉料复合的质量比分别为60∶40、55∶45、50∶50、45∶55,采用低温烧结法制备LED基板材料。研究结果表明:随着Al_2O_3含量(质量分数)增加,样品的烧成收缩率与热导率先增加后减小。添加45%Al_2O_3的玻璃/Al_2O_3材料于875℃烧结良好,试样烧成收缩率为12.82%,体积密度为3.10 kg/L,10 MHz下介电常数为8.03,介电损耗为0.000 7,热导率为2.89 W/(m·K)。高温下Ca~(2+)离子、Al~(3+)离子、Si~(4+)离子与O~(2-)离子聚集在一起发生了化学反应,形成了CaAl_2Si_2O_8晶体。玻璃/Al_2O_3烧结材料的主晶相为玻璃、氧化铝、钙长石,SEM显示烧结体微观结构致密。因此该体系材料比较适合用作低温烧结LED基板材料。  相似文献   

10.
杨振涛  鲁燕萍 《硅酸盐通报》2013,32(9):1741-1746
以氮化铝、钨为原料,在氮气气氛下,采用无压烧结方式制备了AlN-W复合微波衰减材料.采用扫描电子显微镜、矢量网络分析仪及激光导热仪对样品的微观结构、介电性能及热导率进行测试分析.结果表明:随着烧结温度的增加,AlN-W复合陶瓷的介电常数逐渐增大,介电损耗变化不大.随着烧结助剂添加量的增加,AlN-W复合陶瓷的介电常数和介电损耗相应增大.随着W含量的增加,AlN-W陶瓷的介电常数呈增加的趋势,介电损耗逐渐降低,当W添加量为60%时损耗几乎为零.随着W颗粒粒径的增加,AlN-W复合陶瓷的介电常数变化不大,介电损耗逐渐降低.由此可通过调节烧结温度、衰减剂含量、衰减剂粒径及烧结助剂的添加量,来制备符合实际需要的复合微波衰减材料.1750℃下制备的A1 N-40%W复合陶瓷热导率为91 W/m·K.初步分析了AlN-W复合陶瓷的微波衰减机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号